Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation

Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e39728-e39728
Hauptverfasser: Kroy, Daniela C, Hebing, Lisa, Sander, Leif E, Gassler, Nikolaus, Erschfeld, Stephanie, Sackett, Sara, Galm, Oliver, Trautwein, Christian, Streetz, Konrad L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e39728
container_issue 6
container_start_page e39728
container_title PloS one
container_volume 7
creator Kroy, Daniela C
Hebing, Lisa
Sander, Leif E
Gassler, Nikolaus
Erschfeld, Stephanie
Sackett, Sara
Galm, Oliver
Trautwein, Christian
Streetz, Konrad L
description Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.
doi_str_mv 10.1371/journal.pone.0039728
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325027270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477052018</galeid><doaj_id>oai_doaj_org_article_9df37dd927cb472383d2d33e3ba9a721</doaj_id><sourcerecordid>A477052018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9797b8ad9cdc0556805ae716fd81d3de43527152331a65ca4c21624f9b0f197b3</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJwyOJHEicXpFV5rVSpUrtwtWb9yHrljVM7ofDtcdi02qAeUA6OZn7zn_GMJ0leYrTAlOEPOzf4Fuyic61aIERrRqpHySmuKclKgujjo_-T5FkIO4QKWpXl0-SEEJYXFcGnyfDJaK28ansDNvXOqtTptOkwRZlUnWpldKXX6-U6hVamVxDSYJqY15q2SbXz6RbUHnrXOaOCCdFkrbsdnZtYWLYH791t2ntoQ2eh7aE3rn2ePNFgg3oxnWfJ9y-f1-ffsovLr6vz5UUmypr0Wc1qtqlA1kIKVBRlhQpQDJdaVlhSqXJaEIYLQimGshCQC4JLkut6gzSOofQseX3Q7awLfOpY4JiSAhFGGIrE6kBIBzveeRML_s0dGP7X4HzDwfdGWMVrqSmTsiZMbHJGaEUlkZQquoEaGMFR6-OUbdjslRSxcx7sTHTuac2WN-4npzTOIqdR4N0k4N3NoELP9yYIZWPflBti3YiQqiIIjXW_-Qd9-HYT1UC8gGm1i3nFKMqXOWOoIAhXkVo8QMVPqr0RcYraRPss4P0sIDK9-tU3MITAV9dX_89e_pizb4_YrQLbb4Ozw_hkwhzMD6DwLgSv9H2TMeLjdtx1g4_bwaftiGGvjgd0H3S3DvQPCaEJ8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325027270</pqid></control><display><type>article</type><title>Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kroy, Daniela C ; Hebing, Lisa ; Sander, Leif E ; Gassler, Nikolaus ; Erschfeld, Stephanie ; Sackett, Sara ; Galm, Oliver ; Trautwein, Christian ; Streetz, Konrad L</creator><contributor>Abdelhay, Eliana Saul Furquim Werneck</contributor><creatorcontrib>Kroy, Daniela C ; Hebing, Lisa ; Sander, Leif E ; Gassler, Nikolaus ; Erschfeld, Stephanie ; Sackett, Sara ; Galm, Oliver ; Trautwein, Christian ; Streetz, Konrad L ; Abdelhay, Eliana Saul Furquim Werneck</creatorcontrib><description>Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039728</identifier><identifier>PMID: 22745821</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Anemia ; Animals ; Biology ; Blood cells ; Bone marrow ; Bone Marrow Transplantation ; Cascades ; CD11b antigen ; CD19 antigen ; CD4 antigen ; CD8 antigen ; Cytokine Receptor gp130 - genetics ; Cytokine Receptor gp130 - metabolism ; Cytokines ; Cytometry ; Dendritic cells ; Flow cytometry ; Glycoprotein gp130 ; Grafting ; Grafts ; Growth factors ; Hematopoiesis - genetics ; Hematopoiesis - physiology ; Hematopoietic stem cell transplantation ; Hematopoietic stem cells ; Humans ; Interleukin 6 ; Interleukins ; Laboratory animals ; Leukocytes ; Ligands ; Lymphocytes B ; Lymphocytes T ; MAP kinase ; Medical research ; Medicine ; Mice ; Mice, Knockout ; Mice, Mutant Strains ; Mutation ; Myeloid cells ; ras Proteins - genetics ; ras Proteins - metabolism ; Repopulation ; Rodents ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - physiology ; Signaling ; STAT Transcription Factors - genetics ; STAT Transcription Factors - metabolism ; Stat1 protein ; STAT1 Transcription Factor - genetics ; STAT1 Transcription Factor - metabolism ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Stem cell transplantation ; Stem cells ; Survival ; T cells ; Thrombocytopenia ; Thrombopoiesis ; Transcription factors ; Transplantation ; Tumors ; White blood cell count</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e39728-e39728</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Kroy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kroy et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9797b8ad9cdc0556805ae716fd81d3de43527152331a65ca4c21624f9b0f197b3</citedby><cites>FETCH-LOGICAL-c692t-9797b8ad9cdc0556805ae716fd81d3de43527152331a65ca4c21624f9b0f197b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382143/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382143/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abdelhay, Eliana Saul Furquim Werneck</contributor><creatorcontrib>Kroy, Daniela C</creatorcontrib><creatorcontrib>Hebing, Lisa</creatorcontrib><creatorcontrib>Sander, Leif E</creatorcontrib><creatorcontrib>Gassler, Nikolaus</creatorcontrib><creatorcontrib>Erschfeld, Stephanie</creatorcontrib><creatorcontrib>Sackett, Sara</creatorcontrib><creatorcontrib>Galm, Oliver</creatorcontrib><creatorcontrib>Trautwein, Christian</creatorcontrib><creatorcontrib>Streetz, Konrad L</creatorcontrib><title>Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.</description><subject>Analysis</subject><subject>Anemia</subject><subject>Animals</subject><subject>Biology</subject><subject>Blood cells</subject><subject>Bone marrow</subject><subject>Bone Marrow Transplantation</subject><subject>Cascades</subject><subject>CD11b antigen</subject><subject>CD19 antigen</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cytokine Receptor gp130 - genetics</subject><subject>Cytokine Receptor gp130 - metabolism</subject><subject>Cytokines</subject><subject>Cytometry</subject><subject>Dendritic cells</subject><subject>Flow cytometry</subject><subject>Glycoprotein gp130</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Growth factors</subject><subject>Hematopoiesis - genetics</subject><subject>Hematopoiesis - physiology</subject><subject>Hematopoietic stem cell transplantation</subject><subject>Hematopoietic stem cells</subject><subject>Humans</subject><subject>Interleukin 6</subject><subject>Interleukins</subject><subject>Laboratory animals</subject><subject>Leukocytes</subject><subject>Ligands</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>MAP kinase</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Mutant Strains</subject><subject>Mutation</subject><subject>Myeloid cells</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>Repopulation</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><subject>STAT Transcription Factors - genetics</subject><subject>STAT Transcription Factors - metabolism</subject><subject>Stat1 protein</subject><subject>STAT1 Transcription Factor - genetics</subject><subject>STAT1 Transcription Factor - metabolism</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Survival</subject><subject>T cells</subject><subject>Thrombocytopenia</subject><subject>Thrombopoiesis</subject><subject>Transcription factors</subject><subject>Transplantation</subject><subject>Tumors</subject><subject>White blood cell count</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJwyOJHEicXpFV5rVSpUrtwtWb9yHrljVM7ofDtcdi02qAeUA6OZn7zn_GMJ0leYrTAlOEPOzf4Fuyic61aIERrRqpHySmuKclKgujjo_-T5FkIO4QKWpXl0-SEEJYXFcGnyfDJaK28ansDNvXOqtTptOkwRZlUnWpldKXX6-U6hVamVxDSYJqY15q2SbXz6RbUHnrXOaOCCdFkrbsdnZtYWLYH791t2ntoQ2eh7aE3rn2ePNFgg3oxnWfJ9y-f1-ffsovLr6vz5UUmypr0Wc1qtqlA1kIKVBRlhQpQDJdaVlhSqXJaEIYLQimGshCQC4JLkut6gzSOofQseX3Q7awLfOpY4JiSAhFGGIrE6kBIBzveeRML_s0dGP7X4HzDwfdGWMVrqSmTsiZMbHJGaEUlkZQquoEaGMFR6-OUbdjslRSxcx7sTHTuac2WN-4npzTOIqdR4N0k4N3NoELP9yYIZWPflBti3YiQqiIIjXW_-Qd9-HYT1UC8gGm1i3nFKMqXOWOoIAhXkVo8QMVPqr0RcYraRPss4P0sIDK9-tU3MITAV9dX_89e_pizb4_YrQLbb4Ozw_hkwhzMD6DwLgSv9H2TMeLjdtx1g4_bwaftiGGvjgd0H3S3DvQPCaEJ8Q</recordid><startdate>20120622</startdate><enddate>20120622</enddate><creator>Kroy, Daniela C</creator><creator>Hebing, Lisa</creator><creator>Sander, Leif E</creator><creator>Gassler, Nikolaus</creator><creator>Erschfeld, Stephanie</creator><creator>Sackett, Sara</creator><creator>Galm, Oliver</creator><creator>Trautwein, Christian</creator><creator>Streetz, Konrad L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120622</creationdate><title>Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation</title><author>Kroy, Daniela C ; Hebing, Lisa ; Sander, Leif E ; Gassler, Nikolaus ; Erschfeld, Stephanie ; Sackett, Sara ; Galm, Oliver ; Trautwein, Christian ; Streetz, Konrad L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9797b8ad9cdc0556805ae716fd81d3de43527152331a65ca4c21624f9b0f197b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Anemia</topic><topic>Animals</topic><topic>Biology</topic><topic>Blood cells</topic><topic>Bone marrow</topic><topic>Bone Marrow Transplantation</topic><topic>Cascades</topic><topic>CD11b antigen</topic><topic>CD19 antigen</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cytokine Receptor gp130 - genetics</topic><topic>Cytokine Receptor gp130 - metabolism</topic><topic>Cytokines</topic><topic>Cytometry</topic><topic>Dendritic cells</topic><topic>Flow cytometry</topic><topic>Glycoprotein gp130</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Growth factors</topic><topic>Hematopoiesis - genetics</topic><topic>Hematopoiesis - physiology</topic><topic>Hematopoietic stem cell transplantation</topic><topic>Hematopoietic stem cells</topic><topic>Humans</topic><topic>Interleukin 6</topic><topic>Interleukins</topic><topic>Laboratory animals</topic><topic>Leukocytes</topic><topic>Ligands</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>MAP kinase</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Mutant Strains</topic><topic>Mutation</topic><topic>Myeloid cells</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>Repopulation</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><topic>STAT Transcription Factors - genetics</topic><topic>STAT Transcription Factors - metabolism</topic><topic>Stat1 protein</topic><topic>STAT1 Transcription Factor - genetics</topic><topic>STAT1 Transcription Factor - metabolism</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Survival</topic><topic>T cells</topic><topic>Thrombocytopenia</topic><topic>Thrombopoiesis</topic><topic>Transcription factors</topic><topic>Transplantation</topic><topic>Tumors</topic><topic>White blood cell count</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroy, Daniela C</creatorcontrib><creatorcontrib>Hebing, Lisa</creatorcontrib><creatorcontrib>Sander, Leif E</creatorcontrib><creatorcontrib>Gassler, Nikolaus</creatorcontrib><creatorcontrib>Erschfeld, Stephanie</creatorcontrib><creatorcontrib>Sackett, Sara</creatorcontrib><creatorcontrib>Galm, Oliver</creatorcontrib><creatorcontrib>Trautwein, Christian</creatorcontrib><creatorcontrib>Streetz, Konrad L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroy, Daniela C</au><au>Hebing, Lisa</au><au>Sander, Leif E</au><au>Gassler, Nikolaus</au><au>Erschfeld, Stephanie</au><au>Sackett, Sara</au><au>Galm, Oliver</au><au>Trautwein, Christian</au><au>Streetz, Konrad L</au><au>Abdelhay, Eliana Saul Furquim Werneck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-22</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e39728</spage><epage>e39728</epage><pages>e39728-e39728</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22745821</pmid><doi>10.1371/journal.pone.0039728</doi><tpages>e39728</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e39728-e39728
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325027270
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Anemia
Animals
Biology
Blood cells
Bone marrow
Bone Marrow Transplantation
Cascades
CD11b antigen
CD19 antigen
CD4 antigen
CD8 antigen
Cytokine Receptor gp130 - genetics
Cytokine Receptor gp130 - metabolism
Cytokines
Cytometry
Dendritic cells
Flow cytometry
Glycoprotein gp130
Grafting
Grafts
Growth factors
Hematopoiesis - genetics
Hematopoiesis - physiology
Hematopoietic stem cell transplantation
Hematopoietic stem cells
Humans
Interleukin 6
Interleukins
Laboratory animals
Leukocytes
Ligands
Lymphocytes B
Lymphocytes T
MAP kinase
Medical research
Medicine
Mice
Mice, Knockout
Mice, Mutant Strains
Mutation
Myeloid cells
ras Proteins - genetics
ras Proteins - metabolism
Repopulation
Rodents
Signal transduction
Signal Transduction - genetics
Signal Transduction - physiology
Signaling
STAT Transcription Factors - genetics
STAT Transcription Factors - metabolism
Stat1 protein
STAT1 Transcription Factor - genetics
STAT1 Transcription Factor - metabolism
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Stem cell transplantation
Stem cells
Survival
T cells
Thrombocytopenia
Thrombopoiesis
Transcription factors
Transplantation
Tumors
White blood cell count
title Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20role%20of%20gp130-dependent%20STAT%20and%20Ras%20signalling%20for%20haematopoiesis%20following%20bone-marrow%20transplantation&rft.jtitle=PloS%20one&rft.au=Kroy,%20Daniela%20C&rft.date=2012-06-22&rft.volume=7&rft.issue=6&rft.spage=e39728&rft.epage=e39728&rft.pages=e39728-e39728&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039728&rft_dat=%3Cgale_plos_%3EA477052018%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325027270&rft_id=info:pmid/22745821&rft_galeid=A477052018&rft_doaj_id=oai_doaj_org_article_9df37dd927cb472383d2d33e3ba9a721&rfr_iscdi=true