Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition

It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e39430-e39430
Hauptverfasser: Fink, Brian D, Herlein, Judy A, O'Malley, Yunxia, Sivitz, William I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e39430
container_issue 6
container_start_page e39430
container_title PloS one
container_volume 7
creator Fink, Brian D
Herlein, Judy A
O'Malley, Yunxia
Sivitz, William I
description It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO(2) increased, but only marginally after high glucose exposure while oleate oxidation to CO(2) decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets.
doi_str_mv 10.1371/journal.pone.0039430
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325027063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477051987</galeid><doaj_id>oai_doaj_org_article_8d4636f19da9407a85179165a467251a</doaj_id><sourcerecordid>A477051987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f34d8b3c9aa648ba7c390db8b18cd8ec18061e52281d3d7915cead3ede85d3cc3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xMMhkvhFKqLhQKfl6GTHJmNiWbbCcZ0X9vtjstO9ILmYsMyXPek_fkLYrnGC0xrfG7qzAOXrnlNnhYIkSbiqIHxTFuKFlwgujDg_-j4kmMVwgxKjh_XBwRUlesZvS4-HnuTUhrcFa5UoNzpfKm3DqVwEEqWxvAw9BDsjq-L6HrQKcydGXvRh0i3NB-TIMFn0odNtsQbbLBPy0edcpFeDatJ8X3j-ffzj4vLi4_rc5OLxaaNyQtOloZ0VLdKMUr0apa0waZVrRYaCNAY4E4BkaIwIaausFMgzIUDAhmqNb0pHi51926EOU0kygxJQyRGnGaidWeMEFdye1gN2r4I4Oy8mYjDL1UQ7bnQApTcco73BjVVKhWguHckjNV8ZowrLLWh6nb2G7A6Gx6UG4mOj_xdi378EtSKki-UxZ4MwkM4XqEmOTGxt3YlYcw5nujbLWinOKMvvoHvd_dRPUqG7C-C7mv3onK06quEcONqDO1vIfKn4GN1TlAnc37s4K3s4LMJPidejXGKFdfv_w_e_ljzr4-YNegXFrH4MZdZOIcrPagHkKMA3R3Q8ZI7vJ_Ow25y7-c8p_LXhw-0F3RbeDpXwP_ABE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325027063</pqid></control><display><type>article</type><title>Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fink, Brian D ; Herlein, Judy A ; O'Malley, Yunxia ; Sivitz, William I</creator><contributor>Turrens, Julio Francisco</contributor><creatorcontrib>Fink, Brian D ; Herlein, Judy A ; O'Malley, Yunxia ; Sivitz, William I ; Turrens, Julio Francisco</creatorcontrib><description>It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO(2) increased, but only marginally after high glucose exposure while oleate oxidation to CO(2) decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039430</identifier><identifier>PMID: 22745753</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; alpha-Linolenic Acid - pharmacology ; Amino acids ; Animals ; Aorta ; ATP ; Biochemistry ; Bioenergetics ; Biology ; Blood platelets ; Blood Platelets - drug effects ; Carbon dioxide ; Cardiovascular disease ; Cattle ; Cell Line ; Complications ; Composition effects ; Diabetes ; Diabetes mellitus ; Endocrinology ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelium ; Energy consumption ; Energy Metabolism - drug effects ; Exposure ; Fatty acids ; Glucose ; Glucose - pharmacology ; Glucose metabolism ; Glycolysis ; Human subjects ; Humans ; Insulin ; Internal medicine ; Kinases ; Linoleic acid ; Linolenic acid ; Linolenic acids ; Medicine ; Metabolism ; Mitochondria ; Mortality ; Nutrient concentrations ; Nutrient uptake ; Nutrients ; Oxidation ; Oxidative metabolism ; Oxygen ; Oxygen consumption ; Oxygen Consumption - drug effects ; Phosphorylation ; Platelets ; Proton flux ; Pyruvic acid ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reserve capacity ; Rodents</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e39430-e39430</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f34d8b3c9aa648ba7c390db8b18cd8ec18061e52281d3d7915cead3ede85d3cc3</citedby><cites>FETCH-LOGICAL-c692t-f34d8b3c9aa648ba7c390db8b18cd8ec18061e52281d3d7915cead3ede85d3cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382132/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382132/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Turrens, Julio Francisco</contributor><creatorcontrib>Fink, Brian D</creatorcontrib><creatorcontrib>Herlein, Judy A</creatorcontrib><creatorcontrib>O'Malley, Yunxia</creatorcontrib><creatorcontrib>Sivitz, William I</creatorcontrib><title>Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO(2) increased, but only marginally after high glucose exposure while oleate oxidation to CO(2) decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets.</description><subject>Acidification</subject><subject>alpha-Linolenic Acid - pharmacology</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aorta</subject><subject>ATP</subject><subject>Biochemistry</subject><subject>Bioenergetics</subject><subject>Biology</subject><subject>Blood platelets</subject><subject>Blood Platelets - drug effects</subject><subject>Carbon dioxide</subject><subject>Cardiovascular disease</subject><subject>Cattle</subject><subject>Cell Line</subject><subject>Complications</subject><subject>Composition effects</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Endocrinology</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Energy consumption</subject><subject>Energy Metabolism - drug effects</subject><subject>Exposure</subject><subject>Fatty acids</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Glucose metabolism</subject><subject>Glycolysis</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Insulin</subject><subject>Internal medicine</subject><subject>Kinases</subject><subject>Linoleic acid</subject><subject>Linolenic acid</subject><subject>Linolenic acids</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mortality</subject><subject>Nutrient concentrations</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Oxidation</subject><subject>Oxidative metabolism</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Oxygen Consumption - drug effects</subject><subject>Phosphorylation</subject><subject>Platelets</subject><subject>Proton flux</subject><subject>Pyruvic acid</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reserve capacity</subject><subject>Rodents</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xMMhkvhFKqLhQKfl6GTHJmNiWbbCcZ0X9vtjstO9ILmYsMyXPek_fkLYrnGC0xrfG7qzAOXrnlNnhYIkSbiqIHxTFuKFlwgujDg_-j4kmMVwgxKjh_XBwRUlesZvS4-HnuTUhrcFa5UoNzpfKm3DqVwEEqWxvAw9BDsjq-L6HrQKcydGXvRh0i3NB-TIMFn0odNtsQbbLBPy0edcpFeDatJ8X3j-ffzj4vLi4_rc5OLxaaNyQtOloZ0VLdKMUr0apa0waZVrRYaCNAY4E4BkaIwIaausFMgzIUDAhmqNb0pHi51926EOU0kygxJQyRGnGaidWeMEFdye1gN2r4I4Oy8mYjDL1UQ7bnQApTcco73BjVVKhWguHckjNV8ZowrLLWh6nb2G7A6Gx6UG4mOj_xdi378EtSKki-UxZ4MwkM4XqEmOTGxt3YlYcw5nujbLWinOKMvvoHvd_dRPUqG7C-C7mv3onK06quEcONqDO1vIfKn4GN1TlAnc37s4K3s4LMJPidejXGKFdfv_w_e_ljzr4-YNegXFrH4MZdZOIcrPagHkKMA3R3Q8ZI7vJ_Ow25y7-c8p_LXhw-0F3RbeDpXwP_ABE</recordid><startdate>20120622</startdate><enddate>20120622</enddate><creator>Fink, Brian D</creator><creator>Herlein, Judy A</creator><creator>O'Malley, Yunxia</creator><creator>Sivitz, William I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120622</creationdate><title>Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition</title><author>Fink, Brian D ; Herlein, Judy A ; O'Malley, Yunxia ; Sivitz, William I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f34d8b3c9aa648ba7c390db8b18cd8ec18061e52281d3d7915cead3ede85d3cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acidification</topic><topic>alpha-Linolenic Acid - pharmacology</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aorta</topic><topic>ATP</topic><topic>Biochemistry</topic><topic>Bioenergetics</topic><topic>Biology</topic><topic>Blood platelets</topic><topic>Blood Platelets - drug effects</topic><topic>Carbon dioxide</topic><topic>Cardiovascular disease</topic><topic>Cattle</topic><topic>Cell Line</topic><topic>Complications</topic><topic>Composition effects</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Endocrinology</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Energy consumption</topic><topic>Energy Metabolism - drug effects</topic><topic>Exposure</topic><topic>Fatty acids</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Glucose metabolism</topic><topic>Glycolysis</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Insulin</topic><topic>Internal medicine</topic><topic>Kinases</topic><topic>Linoleic acid</topic><topic>Linolenic acid</topic><topic>Linolenic acids</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mortality</topic><topic>Nutrient concentrations</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Oxidation</topic><topic>Oxidative metabolism</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Oxygen Consumption - drug effects</topic><topic>Phosphorylation</topic><topic>Platelets</topic><topic>Proton flux</topic><topic>Pyruvic acid</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reserve capacity</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fink, Brian D</creatorcontrib><creatorcontrib>Herlein, Judy A</creatorcontrib><creatorcontrib>O'Malley, Yunxia</creatorcontrib><creatorcontrib>Sivitz, William I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fink, Brian D</au><au>Herlein, Judy A</au><au>O'Malley, Yunxia</au><au>Sivitz, William I</au><au>Turrens, Julio Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-22</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e39430</spage><epage>e39430</epage><pages>e39430-e39430</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO(2) increased, but only marginally after high glucose exposure while oleate oxidation to CO(2) decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22745753</pmid><doi>10.1371/journal.pone.0039430</doi><tpages>e39430</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e39430-e39430
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325027063
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acidification
alpha-Linolenic Acid - pharmacology
Amino acids
Animals
Aorta
ATP
Biochemistry
Bioenergetics
Biology
Blood platelets
Blood Platelets - drug effects
Carbon dioxide
Cardiovascular disease
Cattle
Cell Line
Complications
Composition effects
Diabetes
Diabetes mellitus
Endocrinology
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Endothelium
Energy consumption
Energy Metabolism - drug effects
Exposure
Fatty acids
Glucose
Glucose - pharmacology
Glucose metabolism
Glycolysis
Human subjects
Humans
Insulin
Internal medicine
Kinases
Linoleic acid
Linolenic acid
Linolenic acids
Medicine
Metabolism
Mitochondria
Mortality
Nutrient concentrations
Nutrient uptake
Nutrients
Oxidation
Oxidative metabolism
Oxygen
Oxygen consumption
Oxygen Consumption - drug effects
Phosphorylation
Platelets
Proton flux
Pyruvic acid
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reserve capacity
Rodents
title Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelial%20cell%20and%20platelet%20bioenergetics:%20effect%20of%20glucose%20and%20nutrient%20composition&rft.jtitle=PloS%20one&rft.au=Fink,%20Brian%20D&rft.date=2012-06-22&rft.volume=7&rft.issue=6&rft.spage=e39430&rft.epage=e39430&rft.pages=e39430-e39430&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039430&rft_dat=%3Cgale_plos_%3EA477051987%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325027063&rft_id=info:pmid/22745753&rft_galeid=A477051987&rft_doaj_id=oai_doaj_org_article_8d4636f19da9407a85179165a467251a&rfr_iscdi=true