saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus

Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e38453-e38453
Hauptverfasser: Mrak, Lara N, Zielinska, Agnieszka K, Beenken, Karen E, Mrak, Ian N, Atwood, Danielle N, Griffin, Linda M, Lee, Chia Y, Smeltzer, Mark S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e38453
container_issue 6
container_start_page e38453
container_title PloS one
container_volume 7
creator Mrak, Lara N
Zielinska, Agnieszka K
Beenken, Karen E
Mrak, Ian N
Atwood, Danielle N
Griffin, Linda M
Lee, Chia Y
Smeltzer, Mark S
description Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level.
doi_str_mv 10.1371/journal.pone.0038453
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325024373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477115237</galeid><doaj_id>oai_doaj_org_article_c984e45f8b7e4ff7927409ed1e87473a</doaj_id><sourcerecordid>A477115237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-25b7991f09eaf1bdbd8d0e2dcdfc7ce3882e7053ad8ea8f2a846769e9a626c773</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlom_RGGBY_BhYWdtTbcJqeznRJm5q0svPvTWe6y1T2QnKRtOc5b3Le5ETRa0qWlAv66dYOrgWz7GyLS0K4TFL-JDqnOWeLjBH-9GR9Fr3w_paQlMssex6dMZbJNBX0PLrzgDebGNoy9uBWMeg-9vsW3bb2fa3BmH3c29hh59D7uHO2R_A4LspB97VtD7nhswmRuKhtVZsmrqxr4BCt23jTQ7fbG6ut1oOPYXA4-JfRswqMx1fTfBH9_Prlx-X3xdX1t_Xl6mqhRSr7BUsLkee0IjlCRYuyKGVJkJW6rLTQyKVkKEJdUEoEWTGQSSayHHPIWKaF4BfR26NuZ6xXk2leUc5SwhIueCDWR6K0cKs6Vzfg9spCrQ4_rNsqcMELg0rnMsEkrWQhMKkqkTORhJOVFKVIBIeg9XnabSgaLDW2vQMzE51H2nqntvaP4jzLZZ4HgQ-TgLO_B_S9amqv0Rho0Q7h3IQRkgjK0oC--wd9vLqJ2kIooG4rG_bVo6haJUJQmjI-urR8hAqjxKbW4YWFW8V5wsdZQmB6vOu3MHiv1pub_2evf83Z9yfsDsH0O2_NML4lPweTI6id9d5h9WAyJWpskHs31NggamqQkPbm9IIeku47gv8FRscNqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325024373</pqid></control><display><type>article</type><title>saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mrak, Lara N ; Zielinska, Agnieszka K ; Beenken, Karen E ; Mrak, Ian N ; Atwood, Danielle N ; Griffin, Linda M ; Lee, Chia Y ; Smeltzer, Mark S</creator><contributor>Freitag, Nancy E.</contributor><creatorcontrib>Mrak, Lara N ; Zielinska, Agnieszka K ; Beenken, Karen E ; Mrak, Ian N ; Atwood, Danielle N ; Griffin, Linda M ; Lee, Chia Y ; Smeltzer, Mark S ; Freitag, Nancy E.</creatorcontrib><description>Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0038453</identifier><identifier>PMID: 22685571</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Activation ; Adhesins, Bacterial - genetics ; Adhesins, Bacterial - metabolism ; Analysis ; Anchoring ; Antibiotics ; Aureolysin ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding proteins ; Biofilms ; Biofilms - growth &amp; development ; Biology ; Blotting, Western ; Cell walls ; Clinical isolates ; Defects ; Extracellular Space - enzymology ; Fibronectin ; Fibronectins ; Gene Expression Regulation, Bacterial ; Gene mutation ; Genes ; Genomics ; Immunology ; Ligands ; Medicine ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Mutants ; Mutation ; Peptide Hydrolases - genetics ; Peptide Hydrolases - metabolism ; Phenotype ; Point mutation ; Protease ; Proteases ; Protein binding ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Proteinase ; Proteins ; Restoration ; Reverse Transcriptase Polymerase Chain Reaction ; Staphylococcus aureus ; Staphylococcus aureus - genetics ; Staphylococcus aureus - metabolism ; Staphylococcus aureus - physiology ; Staphylococcus aureus infections ; Staphylococcus infections ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription ; Transcription Factors</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e38453-e38453</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Mrak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Mrak et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-25b7991f09eaf1bdbd8d0e2dcdfc7ce3882e7053ad8ea8f2a846769e9a626c773</citedby><cites>FETCH-LOGICAL-c758t-25b7991f09eaf1bdbd8d0e2dcdfc7ce3882e7053ad8ea8f2a846769e9a626c773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369899/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369899/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22685571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Freitag, Nancy E.</contributor><creatorcontrib>Mrak, Lara N</creatorcontrib><creatorcontrib>Zielinska, Agnieszka K</creatorcontrib><creatorcontrib>Beenken, Karen E</creatorcontrib><creatorcontrib>Mrak, Ian N</creatorcontrib><creatorcontrib>Atwood, Danielle N</creatorcontrib><creatorcontrib>Griffin, Linda M</creatorcontrib><creatorcontrib>Lee, Chia Y</creatorcontrib><creatorcontrib>Smeltzer, Mark S</creatorcontrib><title>saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level.</description><subject>Accumulation</subject><subject>Activation</subject><subject>Adhesins, Bacterial - genetics</subject><subject>Adhesins, Bacterial - metabolism</subject><subject>Analysis</subject><subject>Anchoring</subject><subject>Antibiotics</subject><subject>Aureolysin</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding proteins</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Cell walls</subject><subject>Clinical isolates</subject><subject>Defects</subject><subject>Extracellular Space - enzymology</subject><subject>Fibronectin</subject><subject>Fibronectins</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genomics</subject><subject>Immunology</subject><subject>Ligands</subject><subject>Medicine</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Phenotype</subject><subject>Point mutation</subject><subject>Protease</subject><subject>Proteases</subject><subject>Protein binding</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Restoration</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Staphylococcus aureus - physiology</subject><subject>Staphylococcus aureus infections</subject><subject>Staphylococcus infections</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription</subject><subject>Transcription Factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlom_RGGBY_BhYWdtTbcJqeznRJm5q0svPvTWe6y1T2QnKRtOc5b3Le5ETRa0qWlAv66dYOrgWz7GyLS0K4TFL-JDqnOWeLjBH-9GR9Fr3w_paQlMssex6dMZbJNBX0PLrzgDebGNoy9uBWMeg-9vsW3bb2fa3BmH3c29hh59D7uHO2R_A4LspB97VtD7nhswmRuKhtVZsmrqxr4BCt23jTQ7fbG6ut1oOPYXA4-JfRswqMx1fTfBH9_Prlx-X3xdX1t_Xl6mqhRSr7BUsLkee0IjlCRYuyKGVJkJW6rLTQyKVkKEJdUEoEWTGQSSayHHPIWKaF4BfR26NuZ6xXk2leUc5SwhIueCDWR6K0cKs6Vzfg9spCrQ4_rNsqcMELg0rnMsEkrWQhMKkqkTORhJOVFKVIBIeg9XnabSgaLDW2vQMzE51H2nqntvaP4jzLZZ4HgQ-TgLO_B_S9amqv0Rho0Q7h3IQRkgjK0oC--wd9vLqJ2kIooG4rG_bVo6haJUJQmjI-urR8hAqjxKbW4YWFW8V5wsdZQmB6vOu3MHiv1pub_2evf83Z9yfsDsH0O2_NML4lPweTI6id9d5h9WAyJWpskHs31NggamqQkPbm9IIeku47gv8FRscNqA</recordid><startdate>20120607</startdate><enddate>20120607</enddate><creator>Mrak, Lara N</creator><creator>Zielinska, Agnieszka K</creator><creator>Beenken, Karen E</creator><creator>Mrak, Ian N</creator><creator>Atwood, Danielle N</creator><creator>Griffin, Linda M</creator><creator>Lee, Chia Y</creator><creator>Smeltzer, Mark S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120607</creationdate><title>saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus</title><author>Mrak, Lara N ; Zielinska, Agnieszka K ; Beenken, Karen E ; Mrak, Ian N ; Atwood, Danielle N ; Griffin, Linda M ; Lee, Chia Y ; Smeltzer, Mark S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-25b7991f09eaf1bdbd8d0e2dcdfc7ce3882e7053ad8ea8f2a846769e9a626c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accumulation</topic><topic>Activation</topic><topic>Adhesins, Bacterial - genetics</topic><topic>Adhesins, Bacterial - metabolism</topic><topic>Analysis</topic><topic>Anchoring</topic><topic>Antibiotics</topic><topic>Aureolysin</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding proteins</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Cell walls</topic><topic>Clinical isolates</topic><topic>Defects</topic><topic>Extracellular Space - enzymology</topic><topic>Fibronectin</topic><topic>Fibronectins</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genomics</topic><topic>Immunology</topic><topic>Ligands</topic><topic>Medicine</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Phenotype</topic><topic>Point mutation</topic><topic>Protease</topic><topic>Proteases</topic><topic>Protein binding</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Restoration</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Staphylococcus aureus - physiology</topic><topic>Staphylococcus aureus infections</topic><topic>Staphylococcus infections</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mrak, Lara N</creatorcontrib><creatorcontrib>Zielinska, Agnieszka K</creatorcontrib><creatorcontrib>Beenken, Karen E</creatorcontrib><creatorcontrib>Mrak, Ian N</creatorcontrib><creatorcontrib>Atwood, Danielle N</creatorcontrib><creatorcontrib>Griffin, Linda M</creatorcontrib><creatorcontrib>Lee, Chia Y</creatorcontrib><creatorcontrib>Smeltzer, Mark S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mrak, Lara N</au><au>Zielinska, Agnieszka K</au><au>Beenken, Karen E</au><au>Mrak, Ian N</au><au>Atwood, Danielle N</au><au>Griffin, Linda M</au><au>Lee, Chia Y</au><au>Smeltzer, Mark S</au><au>Freitag, Nancy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-07</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e38453</spage><epage>e38453</epage><pages>e38453-e38453</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22685571</pmid><doi>10.1371/journal.pone.0038453</doi><tpages>e38453</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e38453-e38453
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325024373
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accumulation
Activation
Adhesins, Bacterial - genetics
Adhesins, Bacterial - metabolism
Analysis
Anchoring
Antibiotics
Aureolysin
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding proteins
Biofilms
Biofilms - growth & development
Biology
Blotting, Western
Cell walls
Clinical isolates
Defects
Extracellular Space - enzymology
Fibronectin
Fibronectins
Gene Expression Regulation, Bacterial
Gene mutation
Genes
Genomics
Immunology
Ligands
Medicine
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Mutants
Mutation
Peptide Hydrolases - genetics
Peptide Hydrolases - metabolism
Phenotype
Point mutation
Protease
Proteases
Protein binding
Protein Kinases - genetics
Protein Kinases - metabolism
Proteinase
Proteins
Restoration
Reverse Transcriptase Polymerase Chain Reaction
Staphylococcus aureus
Staphylococcus aureus - genetics
Staphylococcus aureus - metabolism
Staphylococcus aureus - physiology
Staphylococcus aureus infections
Staphylococcus infections
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription
Transcription Factors
title saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=saeRS%20and%20sarA%20act%20synergistically%20to%20repress%20protease%20production%20and%20promote%20biofilm%20formation%20in%20Staphylococcus%20aureus&rft.jtitle=PloS%20one&rft.au=Mrak,%20Lara%20N&rft.date=2012-06-07&rft.volume=7&rft.issue=6&rft.spage=e38453&rft.epage=e38453&rft.pages=e38453-e38453&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0038453&rft_dat=%3Cgale_plos_%3EA477115237%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325024373&rft_id=info:pmid/22685571&rft_galeid=A477115237&rft_doaj_id=oai_doaj_org_article_c984e45f8b7e4ff7927409ed1e87473a&rfr_iscdi=true