In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells

We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-05, Vol.7 (5), p.e37194-e37194
Hauptverfasser: Rousseau, Laure, Etienne, Olivier, Roque, Telma, Desmaze, Chantal, Haton, Céline, Mouthon, Marc-André, Bernardino-Sgherri, Jacqueline, Essers, Jeroen, Kanaar, Roland, Boussin, François D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e37194
container_issue 5
container_start_page e37194
container_title PloS one
container_volume 7
creator Rousseau, Laure
Etienne, Olivier
Roque, Telma
Desmaze, Chantal
Haton, Céline
Mouthon, Marc-André
Bernardino-Sgherri, Jacqueline
Essers, Jeroen
Kanaar, Roland
Boussin, François D
description We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.
doi_str_mv 10.1371/journal.pone.0037194
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325019123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004124</galeid><doaj_id>oai_doaj_org_article_f95c774b93764c7aa02cb09eb5f9819e</doaj_id><sourcerecordid>A477004124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTSZobYVi_BhYX_LoNmfSkk6FNatIO-u9Nne4ylb2QXrS8ec6b5O05WfYUoyUmHL_Z-yE41Sw772CJUJIEvZedY0GKBSsQuX_yfZY9inGP0IqUjD3MzoqCMUYoPc-qjcsP9uBz23Y-9MppyL3Jd771ja_9EPMA2rdb61RvvcvffV4npVM25MaHvE0E5A6GoJo89tDmylV5F3wNzvYJ0NA08XH2wKgmwpPpfZF9__D-2-WnxdX1x83l-mqhmSj6BReVopgzSjVLggYOlJmCc8HKihaUlgqIooQhzrji3BgwiFKjNQFelhW5yJ4ffbvGRzkFFCUmxQphgQuSiM2RqLzayy7YVoXf0isr_wo-1FKF3uoGpBErzTndCpJOpLlSqNBbJGC7MqLEApLX22m3YdtCpcH1KYWZ6XzF2Z2s_UESwooVF8ng1WQQ_M8BYi9bG8fAlIOUq8QIlyXDZDWe-8U_6N23m6hapQtYZ3zaV4-mck05R4jigiZqeQeVngpaq1M3GZv0WcHrWUFievjV12qIUW6-fvl_9vrHnH15wu5ANf0u-mYYGy3OQXoEdfAxBjC3IWMkx2G4SUOOwyCnYUhlz05_0G3RTfeTPwoVBAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325019123</pqid></control><display><type>article</type><title>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rousseau, Laure ; Etienne, Olivier ; Roque, Telma ; Desmaze, Chantal ; Haton, Céline ; Mouthon, Marc-André ; Bernardino-Sgherri, Jacqueline ; Essers, Jeroen ; Kanaar, Roland ; Boussin, François D</creator><creatorcontrib>Rousseau, Laure ; Etienne, Olivier ; Roque, Telma ; Desmaze, Chantal ; Haton, Céline ; Mouthon, Marc-André ; Bernardino-Sgherri, Jacqueline ; Essers, Jeroen ; Kanaar, Roland ; Boussin, François D</creatorcontrib><description>We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0037194</identifier><identifier>PMID: 22666344</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apoptosis ; Apoptosis - genetics ; Apoptosis - radiation effects ; Biology ; Biotechnology ; Brain ; Brain - cytology ; Brain - growth &amp; development ; Brain - metabolism ; Brain - radiation effects ; Brain damage ; Cell cycle ; Cell Cycle - genetics ; Cell Cycle - radiation effects ; Cell Nucleus - genetics ; Cell Nucleus - radiation effects ; Cells (biology) ; Cortex ; Deoxyribonucleic acid ; Disruption ; DNA ; DNA damage ; DNA Damage - genetics ; DNA Helicases - deficiency ; DNA Helicases - metabolism ; DNA repair ; DNA Repair - genetics ; DNA Repair - radiation effects ; Female ; Genetic recombination ; Genomics ; Homologous recombination ; Homologous Recombination - radiation effects ; Homology ; Ionizing radiation ; Irradiated ; Irradiation ; Mice ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural Stem Cells - radiation effects ; Neuroglia - cytology ; Neuroglia - metabolism ; Neuroglia - radiation effects ; Nuclear Proteins - deficiency ; Nuclear Proteins - metabolism ; Pregnancy ; Radiation ; Radiation damage ; Radiation effects ; Repair ; Sensitivity enhancement ; Stem cells ; Time Factors ; Yeast</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e37194-e37194</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Rousseau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Rousseau et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</citedby><cites>FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22666344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rousseau, Laure</creatorcontrib><creatorcontrib>Etienne, Olivier</creatorcontrib><creatorcontrib>Roque, Telma</creatorcontrib><creatorcontrib>Desmaze, Chantal</creatorcontrib><creatorcontrib>Haton, Céline</creatorcontrib><creatorcontrib>Mouthon, Marc-André</creatorcontrib><creatorcontrib>Bernardino-Sgherri, Jacqueline</creatorcontrib><creatorcontrib>Essers, Jeroen</creatorcontrib><creatorcontrib>Kanaar, Roland</creatorcontrib><creatorcontrib>Boussin, François D</creatorcontrib><title>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - radiation effects</subject><subject>Biology</subject><subject>Biotechnology</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - growth &amp; development</subject><subject>Brain - metabolism</subject><subject>Brain - radiation effects</subject><subject>Brain damage</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - radiation effects</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - radiation effects</subject><subject>Cells (biology)</subject><subject>Cortex</subject><subject>Deoxyribonucleic acid</subject><subject>Disruption</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Helicases - deficiency</subject><subject>DNA Helicases - metabolism</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - radiation effects</subject><subject>Female</subject><subject>Genetic recombination</subject><subject>Genomics</subject><subject>Homologous recombination</subject><subject>Homologous Recombination - radiation effects</subject><subject>Homology</subject><subject>Ionizing radiation</subject><subject>Irradiated</subject><subject>Irradiation</subject><subject>Mice</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - radiation effects</subject><subject>Neuroglia - cytology</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - radiation effects</subject><subject>Nuclear Proteins - deficiency</subject><subject>Nuclear Proteins - metabolism</subject><subject>Pregnancy</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation effects</subject><subject>Repair</subject><subject>Sensitivity enhancement</subject><subject>Stem cells</subject><subject>Time Factors</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTSZobYVi_BhYX_LoNmfSkk6FNatIO-u9Nne4ylb2QXrS8ec6b5O05WfYUoyUmHL_Z-yE41Sw772CJUJIEvZedY0GKBSsQuX_yfZY9inGP0IqUjD3MzoqCMUYoPc-qjcsP9uBz23Y-9MppyL3Jd771ja_9EPMA2rdb61RvvcvffV4npVM25MaHvE0E5A6GoJo89tDmylV5F3wNzvYJ0NA08XH2wKgmwpPpfZF9__D-2-WnxdX1x83l-mqhmSj6BReVopgzSjVLggYOlJmCc8HKihaUlgqIooQhzrji3BgwiFKjNQFelhW5yJ4ffbvGRzkFFCUmxQphgQuSiM2RqLzayy7YVoXf0isr_wo-1FKF3uoGpBErzTndCpJOpLlSqNBbJGC7MqLEApLX22m3YdtCpcH1KYWZ6XzF2Z2s_UESwooVF8ng1WQQ_M8BYi9bG8fAlIOUq8QIlyXDZDWe-8U_6N23m6hapQtYZ3zaV4-mck05R4jigiZqeQeVngpaq1M3GZv0WcHrWUFievjV12qIUW6-fvl_9vrHnH15wu5ANf0u-mYYGy3OQXoEdfAxBjC3IWMkx2G4SUOOwyCnYUhlz05_0G3RTfeTPwoVBAA</recordid><startdate>20120529</startdate><enddate>20120529</enddate><creator>Rousseau, Laure</creator><creator>Etienne, Olivier</creator><creator>Roque, Telma</creator><creator>Desmaze, Chantal</creator><creator>Haton, Céline</creator><creator>Mouthon, Marc-André</creator><creator>Bernardino-Sgherri, Jacqueline</creator><creator>Essers, Jeroen</creator><creator>Kanaar, Roland</creator><creator>Boussin, François D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120529</creationdate><title>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</title><author>Rousseau, Laure ; Etienne, Olivier ; Roque, Telma ; Desmaze, Chantal ; Haton, Céline ; Mouthon, Marc-André ; Bernardino-Sgherri, Jacqueline ; Essers, Jeroen ; Kanaar, Roland ; Boussin, François D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - radiation effects</topic><topic>Biology</topic><topic>Biotechnology</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - growth &amp; development</topic><topic>Brain - metabolism</topic><topic>Brain - radiation effects</topic><topic>Brain damage</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - radiation effects</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - radiation effects</topic><topic>Cells (biology)</topic><topic>Cortex</topic><topic>Deoxyribonucleic acid</topic><topic>Disruption</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Helicases - deficiency</topic><topic>DNA Helicases - metabolism</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - radiation effects</topic><topic>Female</topic><topic>Genetic recombination</topic><topic>Genomics</topic><topic>Homologous recombination</topic><topic>Homologous Recombination - radiation effects</topic><topic>Homology</topic><topic>Ionizing radiation</topic><topic>Irradiated</topic><topic>Irradiation</topic><topic>Mice</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - radiation effects</topic><topic>Neuroglia - cytology</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - radiation effects</topic><topic>Nuclear Proteins - deficiency</topic><topic>Nuclear Proteins - metabolism</topic><topic>Pregnancy</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation effects</topic><topic>Repair</topic><topic>Sensitivity enhancement</topic><topic>Stem cells</topic><topic>Time Factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rousseau, Laure</creatorcontrib><creatorcontrib>Etienne, Olivier</creatorcontrib><creatorcontrib>Roque, Telma</creatorcontrib><creatorcontrib>Desmaze, Chantal</creatorcontrib><creatorcontrib>Haton, Céline</creatorcontrib><creatorcontrib>Mouthon, Marc-André</creatorcontrib><creatorcontrib>Bernardino-Sgherri, Jacqueline</creatorcontrib><creatorcontrib>Essers, Jeroen</creatorcontrib><creatorcontrib>Kanaar, Roland</creatorcontrib><creatorcontrib>Boussin, François D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousseau, Laure</au><au>Etienne, Olivier</au><au>Roque, Telma</au><au>Desmaze, Chantal</au><au>Haton, Céline</au><au>Mouthon, Marc-André</au><au>Bernardino-Sgherri, Jacqueline</au><au>Essers, Jeroen</au><au>Kanaar, Roland</au><au>Boussin, François D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-29</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e37194</spage><epage>e37194</epage><pages>e37194-e37194</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22666344</pmid><doi>10.1371/journal.pone.0037194</doi><tpages>e37194</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-05, Vol.7 (5), p.e37194-e37194
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325019123
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Apoptosis
Apoptosis - genetics
Apoptosis - radiation effects
Biology
Biotechnology
Brain
Brain - cytology
Brain - growth & development
Brain - metabolism
Brain - radiation effects
Brain damage
Cell cycle
Cell Cycle - genetics
Cell Cycle - radiation effects
Cell Nucleus - genetics
Cell Nucleus - radiation effects
Cells (biology)
Cortex
Deoxyribonucleic acid
Disruption
DNA
DNA damage
DNA Damage - genetics
DNA Helicases - deficiency
DNA Helicases - metabolism
DNA repair
DNA Repair - genetics
DNA Repair - radiation effects
Female
Genetic recombination
Genomics
Homologous recombination
Homologous Recombination - radiation effects
Homology
Ionizing radiation
Irradiated
Irradiation
Mice
Neural stem cells
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neural Stem Cells - radiation effects
Neuroglia - cytology
Neuroglia - metabolism
Neuroglia - radiation effects
Nuclear Proteins - deficiency
Nuclear Proteins - metabolism
Pregnancy
Radiation
Radiation damage
Radiation effects
Repair
Sensitivity enhancement
Stem cells
Time Factors
Yeast
title In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20importance%20of%20homologous%20recombination%20DNA%20repair%20for%20mouse%20neural%20stem%20and%20progenitor%20cells&rft.jtitle=PloS%20one&rft.au=Rousseau,%20Laure&rft.date=2012-05-29&rft.volume=7&rft.issue=5&rft.spage=e37194&rft.epage=e37194&rft.pages=e37194-e37194&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0037194&rft_dat=%3Cgale_plos_%3EA477004124%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325019123&rft_id=info:pmid/22666344&rft_galeid=A477004124&rft_doaj_id=oai_doaj_org_article_f95c774b93764c7aa02cb09eb5f9819e&rfr_iscdi=true