In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells
We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-05, Vol.7 (5), p.e37194-e37194 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e37194 |
---|---|
container_issue | 5 |
container_start_page | e37194 |
container_title | PloS one |
container_volume | 7 |
creator | Rousseau, Laure Etienne, Olivier Roque, Telma Desmaze, Chantal Haton, Céline Mouthon, Marc-André Bernardino-Sgherri, Jacqueline Essers, Jeroen Kanaar, Roland Boussin, François D |
description | We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways. |
doi_str_mv | 10.1371/journal.pone.0037194 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325019123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004124</galeid><doaj_id>oai_doaj_org_article_f95c774b93764c7aa02cb09eb5f9819e</doaj_id><sourcerecordid>A477004124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTSZobYVi_BhYX_LoNmfSkk6FNatIO-u9Nne4ylb2QXrS8ec6b5O05WfYUoyUmHL_Z-yE41Sw772CJUJIEvZedY0GKBSsQuX_yfZY9inGP0IqUjD3MzoqCMUYoPc-qjcsP9uBz23Y-9MppyL3Jd771ja_9EPMA2rdb61RvvcvffV4npVM25MaHvE0E5A6GoJo89tDmylV5F3wNzvYJ0NA08XH2wKgmwpPpfZF9__D-2-WnxdX1x83l-mqhmSj6BReVopgzSjVLggYOlJmCc8HKihaUlgqIooQhzrji3BgwiFKjNQFelhW5yJ4ffbvGRzkFFCUmxQphgQuSiM2RqLzayy7YVoXf0isr_wo-1FKF3uoGpBErzTndCpJOpLlSqNBbJGC7MqLEApLX22m3YdtCpcH1KYWZ6XzF2Z2s_UESwooVF8ng1WQQ_M8BYi9bG8fAlIOUq8QIlyXDZDWe-8U_6N23m6hapQtYZ3zaV4-mck05R4jigiZqeQeVngpaq1M3GZv0WcHrWUFievjV12qIUW6-fvl_9vrHnH15wu5ANf0u-mYYGy3OQXoEdfAxBjC3IWMkx2G4SUOOwyCnYUhlz05_0G3RTfeTPwoVBAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325019123</pqid></control><display><type>article</type><title>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rousseau, Laure ; Etienne, Olivier ; Roque, Telma ; Desmaze, Chantal ; Haton, Céline ; Mouthon, Marc-André ; Bernardino-Sgherri, Jacqueline ; Essers, Jeroen ; Kanaar, Roland ; Boussin, François D</creator><creatorcontrib>Rousseau, Laure ; Etienne, Olivier ; Roque, Telma ; Desmaze, Chantal ; Haton, Céline ; Mouthon, Marc-André ; Bernardino-Sgherri, Jacqueline ; Essers, Jeroen ; Kanaar, Roland ; Boussin, François D</creatorcontrib><description>We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0037194</identifier><identifier>PMID: 22666344</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apoptosis ; Apoptosis - genetics ; Apoptosis - radiation effects ; Biology ; Biotechnology ; Brain ; Brain - cytology ; Brain - growth & development ; Brain - metabolism ; Brain - radiation effects ; Brain damage ; Cell cycle ; Cell Cycle - genetics ; Cell Cycle - radiation effects ; Cell Nucleus - genetics ; Cell Nucleus - radiation effects ; Cells (biology) ; Cortex ; Deoxyribonucleic acid ; Disruption ; DNA ; DNA damage ; DNA Damage - genetics ; DNA Helicases - deficiency ; DNA Helicases - metabolism ; DNA repair ; DNA Repair - genetics ; DNA Repair - radiation effects ; Female ; Genetic recombination ; Genomics ; Homologous recombination ; Homologous Recombination - radiation effects ; Homology ; Ionizing radiation ; Irradiated ; Irradiation ; Mice ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural Stem Cells - radiation effects ; Neuroglia - cytology ; Neuroglia - metabolism ; Neuroglia - radiation effects ; Nuclear Proteins - deficiency ; Nuclear Proteins - metabolism ; Pregnancy ; Radiation ; Radiation damage ; Radiation effects ; Repair ; Sensitivity enhancement ; Stem cells ; Time Factors ; Yeast</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e37194-e37194</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Rousseau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Rousseau et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</citedby><cites>FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22666344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rousseau, Laure</creatorcontrib><creatorcontrib>Etienne, Olivier</creatorcontrib><creatorcontrib>Roque, Telma</creatorcontrib><creatorcontrib>Desmaze, Chantal</creatorcontrib><creatorcontrib>Haton, Céline</creatorcontrib><creatorcontrib>Mouthon, Marc-André</creatorcontrib><creatorcontrib>Bernardino-Sgherri, Jacqueline</creatorcontrib><creatorcontrib>Essers, Jeroen</creatorcontrib><creatorcontrib>Kanaar, Roland</creatorcontrib><creatorcontrib>Boussin, François D</creatorcontrib><title>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - radiation effects</subject><subject>Biology</subject><subject>Biotechnology</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - growth & development</subject><subject>Brain - metabolism</subject><subject>Brain - radiation effects</subject><subject>Brain damage</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - radiation effects</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - radiation effects</subject><subject>Cells (biology)</subject><subject>Cortex</subject><subject>Deoxyribonucleic acid</subject><subject>Disruption</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Helicases - deficiency</subject><subject>DNA Helicases - metabolism</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - radiation effects</subject><subject>Female</subject><subject>Genetic recombination</subject><subject>Genomics</subject><subject>Homologous recombination</subject><subject>Homologous Recombination - radiation effects</subject><subject>Homology</subject><subject>Ionizing radiation</subject><subject>Irradiated</subject><subject>Irradiation</subject><subject>Mice</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - radiation effects</subject><subject>Neuroglia - cytology</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - radiation effects</subject><subject>Nuclear Proteins - deficiency</subject><subject>Nuclear Proteins - metabolism</subject><subject>Pregnancy</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation effects</subject><subject>Repair</subject><subject>Sensitivity enhancement</subject><subject>Stem cells</subject><subject>Time Factors</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTSZobYVi_BhYX_LoNmfSkk6FNatIO-u9Nne4ylb2QXrS8ec6b5O05WfYUoyUmHL_Z-yE41Sw772CJUJIEvZedY0GKBSsQuX_yfZY9inGP0IqUjD3MzoqCMUYoPc-qjcsP9uBz23Y-9MppyL3Jd771ja_9EPMA2rdb61RvvcvffV4npVM25MaHvE0E5A6GoJo89tDmylV5F3wNzvYJ0NA08XH2wKgmwpPpfZF9__D-2-WnxdX1x83l-mqhmSj6BReVopgzSjVLggYOlJmCc8HKihaUlgqIooQhzrji3BgwiFKjNQFelhW5yJ4ffbvGRzkFFCUmxQphgQuSiM2RqLzayy7YVoXf0isr_wo-1FKF3uoGpBErzTndCpJOpLlSqNBbJGC7MqLEApLX22m3YdtCpcH1KYWZ6XzF2Z2s_UESwooVF8ng1WQQ_M8BYi9bG8fAlIOUq8QIlyXDZDWe-8U_6N23m6hapQtYZ3zaV4-mck05R4jigiZqeQeVngpaq1M3GZv0WcHrWUFievjV12qIUW6-fvl_9vrHnH15wu5ANf0u-mYYGy3OQXoEdfAxBjC3IWMkx2G4SUOOwyCnYUhlz05_0G3RTfeTPwoVBAA</recordid><startdate>20120529</startdate><enddate>20120529</enddate><creator>Rousseau, Laure</creator><creator>Etienne, Olivier</creator><creator>Roque, Telma</creator><creator>Desmaze, Chantal</creator><creator>Haton, Céline</creator><creator>Mouthon, Marc-André</creator><creator>Bernardino-Sgherri, Jacqueline</creator><creator>Essers, Jeroen</creator><creator>Kanaar, Roland</creator><creator>Boussin, François D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120529</creationdate><title>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</title><author>Rousseau, Laure ; Etienne, Olivier ; Roque, Telma ; Desmaze, Chantal ; Haton, Céline ; Mouthon, Marc-André ; Bernardino-Sgherri, Jacqueline ; Essers, Jeroen ; Kanaar, Roland ; Boussin, François D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-79da417644c6692ce7e46f277968d42448ae3a4360767a77ffef044fcc3e788d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - radiation effects</topic><topic>Biology</topic><topic>Biotechnology</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - growth & development</topic><topic>Brain - metabolism</topic><topic>Brain - radiation effects</topic><topic>Brain damage</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - radiation effects</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - radiation effects</topic><topic>Cells (biology)</topic><topic>Cortex</topic><topic>Deoxyribonucleic acid</topic><topic>Disruption</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Helicases - deficiency</topic><topic>DNA Helicases - metabolism</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - radiation effects</topic><topic>Female</topic><topic>Genetic recombination</topic><topic>Genomics</topic><topic>Homologous recombination</topic><topic>Homologous Recombination - radiation effects</topic><topic>Homology</topic><topic>Ionizing radiation</topic><topic>Irradiated</topic><topic>Irradiation</topic><topic>Mice</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - radiation effects</topic><topic>Neuroglia - cytology</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - radiation effects</topic><topic>Nuclear Proteins - deficiency</topic><topic>Nuclear Proteins - metabolism</topic><topic>Pregnancy</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation effects</topic><topic>Repair</topic><topic>Sensitivity enhancement</topic><topic>Stem cells</topic><topic>Time Factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rousseau, Laure</creatorcontrib><creatorcontrib>Etienne, Olivier</creatorcontrib><creatorcontrib>Roque, Telma</creatorcontrib><creatorcontrib>Desmaze, Chantal</creatorcontrib><creatorcontrib>Haton, Céline</creatorcontrib><creatorcontrib>Mouthon, Marc-André</creatorcontrib><creatorcontrib>Bernardino-Sgherri, Jacqueline</creatorcontrib><creatorcontrib>Essers, Jeroen</creatorcontrib><creatorcontrib>Kanaar, Roland</creatorcontrib><creatorcontrib>Boussin, François D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousseau, Laure</au><au>Etienne, Olivier</au><au>Roque, Telma</au><au>Desmaze, Chantal</au><au>Haton, Céline</au><au>Mouthon, Marc-André</au><au>Bernardino-Sgherri, Jacqueline</au><au>Essers, Jeroen</au><au>Kanaar, Roland</au><au>Boussin, François D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-29</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e37194</spage><epage>e37194</epage><pages>e37194-e37194</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22666344</pmid><doi>10.1371/journal.pone.0037194</doi><tpages>e37194</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-05, Vol.7 (5), p.e37194-e37194 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325019123 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Apoptosis Apoptosis - genetics Apoptosis - radiation effects Biology Biotechnology Brain Brain - cytology Brain - growth & development Brain - metabolism Brain - radiation effects Brain damage Cell cycle Cell Cycle - genetics Cell Cycle - radiation effects Cell Nucleus - genetics Cell Nucleus - radiation effects Cells (biology) Cortex Deoxyribonucleic acid Disruption DNA DNA damage DNA Damage - genetics DNA Helicases - deficiency DNA Helicases - metabolism DNA repair DNA Repair - genetics DNA Repair - radiation effects Female Genetic recombination Genomics Homologous recombination Homologous Recombination - radiation effects Homology Ionizing radiation Irradiated Irradiation Mice Neural stem cells Neural Stem Cells - cytology Neural Stem Cells - metabolism Neural Stem Cells - radiation effects Neuroglia - cytology Neuroglia - metabolism Neuroglia - radiation effects Nuclear Proteins - deficiency Nuclear Proteins - metabolism Pregnancy Radiation Radiation damage Radiation effects Repair Sensitivity enhancement Stem cells Time Factors Yeast |
title | In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20importance%20of%20homologous%20recombination%20DNA%20repair%20for%20mouse%20neural%20stem%20and%20progenitor%20cells&rft.jtitle=PloS%20one&rft.au=Rousseau,%20Laure&rft.date=2012-05-29&rft.volume=7&rft.issue=5&rft.spage=e37194&rft.epage=e37194&rft.pages=e37194-e37194&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0037194&rft_dat=%3Cgale_plos_%3EA477004124%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325019123&rft_id=info:pmid/22666344&rft_galeid=A477004124&rft_doaj_id=oai_doaj_org_article_f95c774b93764c7aa02cb09eb5f9819e&rfr_iscdi=true |