Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice
Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and dow...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-05, Vol.7 (5), p.e36315-e36315 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e36315 |
---|---|
container_issue | 5 |
container_start_page | e36315 |
container_title | PloS one |
container_volume | 7 |
creator | Young, Fiona B Franciosi, Sonia Spreeuw, Amanda Deng, Yu Sanders, Shaun Tam, Natalie C M Huang, Kun Singaraja, Roshni R Zhang, Weining Bissada, Nagat Kay, Chris Hayden, Michael R |
description | Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14-/-) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14-/- model in order to confirm that the defects seen in Hip14-/- mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14-/- model. Our findings yield important insights into HIP14 function in vivo. |
doi_str_mv | 10.1371/journal.pone.0036315 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325012563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477046389</galeid><doaj_id>oai_doaj_org_article_5db8172525484d548ab42c775980e410</doaj_id><sourcerecordid>A477046389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-34cac33faffd0cb1dea8d24675fc2ddff1f22c5f6698d4937c707c29536f46763</originalsourceid><addsrcrecordid>eNqNk2uL1DAUhoso7rr6D0QDgijY2dyatl-EZVF3YGDF29eQSU6mGdpmtmlH1__h_zWz012msh-k0Ev6vO-5JCdJnhM8Iywnp2s_dK2qZxvfwgxjJhjJHiTHpGQ0FRSzhwfvR8mTENYYZ6wQ4nFyRKngJS_JcfJn4X-iGrZQB-QtqoZGtehi_plwpDpAYbDWaQdtj3qPOgh6ANTC0PmN6itf-5XTqn6HllCprYsZ7T5UaxC0v68b1TuNDFjQfUAmKqNH7cNNpGboXAtjKBdjug3h6WmKGqfhafLIqjrAs_F5knz_-OHb-UW6uPw0Pz9bpFqUtE8Z10ozZpW1BuslMaAKQ7nIM6upMdYSS6nOrBBlYXjJcp3jXNMyY8JGSrCT5OXedxPTkmNHgySMZpjQTLBIzPeE8WotN51rVHctvXLyZsF3K6m6WGYNMjPLguQ0oxkvuIk3teRU53lWFhg4wdHr_RhtWDZgdOxq7NfEdPqndZVc-a1kLCsZ3xm8GQ06fzVA6GXjgoa6Vi34IeaNScGEyGke0Vf_oPdXN1IrFQtwrfUxrt6ZyjOe55gLVpSRmt1DxctA3Kx4_KyL6xPB24kgMj386ldqCEHOv375f_byx5R9fcBWoOq-Cr4eeufbMAX5HtRdPG4d2LsmEyx303PbDbmbHjlOT5S9ONygO9HtuLC__iUThg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325012563</pqid></control><display><type>article</type><title>Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Young, Fiona B ; Franciosi, Sonia ; Spreeuw, Amanda ; Deng, Yu ; Sanders, Shaun ; Tam, Natalie C M ; Huang, Kun ; Singaraja, Roshni R ; Zhang, Weining ; Bissada, Nagat ; Kay, Chris ; Hayden, Michael R</creator><contributor>Li, Xiao-Jiang</contributor><creatorcontrib>Young, Fiona B ; Franciosi, Sonia ; Spreeuw, Amanda ; Deng, Yu ; Sanders, Shaun ; Tam, Natalie C M ; Huang, Kun ; Singaraja, Roshni R ; Zhang, Weining ; Bissada, Nagat ; Kay, Chris ; Hayden, Michael R ; Li, Xiao-Jiang</creatorcontrib><description>Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14-/-) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14-/- model in order to confirm that the defects seen in Hip14-/- mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14-/- model. Our findings yield important insights into HIP14 function in vivo.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036315</identifier><identifier>PMID: 22649491</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyltransferases - deficiency ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Acyltransferases - pharmacology ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Adaptor Proteins, Signal Transducing - pharmacology ; Alzheimer's disease ; Analysis of Variance ; Animals ; Bacterial artificial chromosomes ; Biology ; Blotting, Western ; Body Weight ; Cell death ; Chromosomes, Artificial, Bacterial - genetics ; Crosses, Genetic ; Defects ; DNA Primers - genetics ; Enzymes ; Genetic engineering ; Genetics ; Human behavior ; Humans ; Huntingtin ; Huntington's disease ; Huntingtons disease ; Immunohistochemistry ; Lipoylation ; Locomotion - drug effects ; Low level ; Medicine ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mutagenesis ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Nerve Tissue Proteins - pharmacology ; Neurophysiology ; Pathogenesis ; Polymerase Chain Reaction ; Protein expression ; Proteins ; Real-Time Polymerase Chain Reaction ; Rotarod Performance Test ; siRNA ; Substrates ; Synapses ; Transgenic mice</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e36315-e36315</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Young et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Young et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-34cac33faffd0cb1dea8d24675fc2ddff1f22c5f6698d4937c707c29536f46763</citedby><cites>FETCH-LOGICAL-c692t-34cac33faffd0cb1dea8d24675fc2ddff1f22c5f6698d4937c707c29536f46763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359340/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359340/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22649491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Li, Xiao-Jiang</contributor><creatorcontrib>Young, Fiona B</creatorcontrib><creatorcontrib>Franciosi, Sonia</creatorcontrib><creatorcontrib>Spreeuw, Amanda</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Sanders, Shaun</creatorcontrib><creatorcontrib>Tam, Natalie C M</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Singaraja, Roshni R</creatorcontrib><creatorcontrib>Zhang, Weining</creatorcontrib><creatorcontrib>Bissada, Nagat</creatorcontrib><creatorcontrib>Kay, Chris</creatorcontrib><creatorcontrib>Hayden, Michael R</creatorcontrib><title>Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14-/-) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14-/- model in order to confirm that the defects seen in Hip14-/- mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14-/- model. Our findings yield important insights into HIP14 function in vivo.</description><subject>Acyltransferases - deficiency</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Acyltransferases - pharmacology</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - pharmacology</subject><subject>Alzheimer's disease</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Bacterial artificial chromosomes</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Body Weight</subject><subject>Cell death</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Crosses, Genetic</subject><subject>Defects</subject><subject>DNA Primers - genetics</subject><subject>Enzymes</subject><subject>Genetic engineering</subject><subject>Genetics</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Huntingtin</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Immunohistochemistry</subject><subject>Lipoylation</subject><subject>Locomotion - drug effects</subject><subject>Low level</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nerve Tissue Proteins - pharmacology</subject><subject>Neurophysiology</subject><subject>Pathogenesis</subject><subject>Polymerase Chain Reaction</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Rotarod Performance Test</subject><subject>siRNA</subject><subject>Substrates</subject><subject>Synapses</subject><subject>Transgenic mice</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2uL1DAUhoso7rr6D0QDgijY2dyatl-EZVF3YGDF29eQSU6mGdpmtmlH1__h_zWz012msh-k0Ev6vO-5JCdJnhM8Iywnp2s_dK2qZxvfwgxjJhjJHiTHpGQ0FRSzhwfvR8mTENYYZ6wQ4nFyRKngJS_JcfJn4X-iGrZQB-QtqoZGtehi_plwpDpAYbDWaQdtj3qPOgh6ANTC0PmN6itf-5XTqn6HllCprYsZ7T5UaxC0v68b1TuNDFjQfUAmKqNH7cNNpGboXAtjKBdjug3h6WmKGqfhafLIqjrAs_F5knz_-OHb-UW6uPw0Pz9bpFqUtE8Z10ozZpW1BuslMaAKQ7nIM6upMdYSS6nOrBBlYXjJcp3jXNMyY8JGSrCT5OXedxPTkmNHgySMZpjQTLBIzPeE8WotN51rVHctvXLyZsF3K6m6WGYNMjPLguQ0oxkvuIk3teRU53lWFhg4wdHr_RhtWDZgdOxq7NfEdPqndZVc-a1kLCsZ3xm8GQ06fzVA6GXjgoa6Vi34IeaNScGEyGke0Vf_oPdXN1IrFQtwrfUxrt6ZyjOe55gLVpSRmt1DxctA3Kx4_KyL6xPB24kgMj386ldqCEHOv375f_byx5R9fcBWoOq-Cr4eeufbMAX5HtRdPG4d2LsmEyx303PbDbmbHjlOT5S9ONygO9HtuLC__iUThg</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Young, Fiona B</creator><creator>Franciosi, Sonia</creator><creator>Spreeuw, Amanda</creator><creator>Deng, Yu</creator><creator>Sanders, Shaun</creator><creator>Tam, Natalie C M</creator><creator>Huang, Kun</creator><creator>Singaraja, Roshni R</creator><creator>Zhang, Weining</creator><creator>Bissada, Nagat</creator><creator>Kay, Chris</creator><creator>Hayden, Michael R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120523</creationdate><title>Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice</title><author>Young, Fiona B ; Franciosi, Sonia ; Spreeuw, Amanda ; Deng, Yu ; Sanders, Shaun ; Tam, Natalie C M ; Huang, Kun ; Singaraja, Roshni R ; Zhang, Weining ; Bissada, Nagat ; Kay, Chris ; Hayden, Michael R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-34cac33faffd0cb1dea8d24675fc2ddff1f22c5f6698d4937c707c29536f46763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acyltransferases - deficiency</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Acyltransferases - pharmacology</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - pharmacology</topic><topic>Alzheimer's disease</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Bacterial artificial chromosomes</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Body Weight</topic><topic>Cell death</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Crosses, Genetic</topic><topic>Defects</topic><topic>DNA Primers - genetics</topic><topic>Enzymes</topic><topic>Genetic engineering</topic><topic>Genetics</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Huntingtin</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Immunohistochemistry</topic><topic>Lipoylation</topic><topic>Locomotion - drug effects</topic><topic>Low level</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nerve Tissue Proteins - pharmacology</topic><topic>Neurophysiology</topic><topic>Pathogenesis</topic><topic>Polymerase Chain Reaction</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Rotarod Performance Test</topic><topic>siRNA</topic><topic>Substrates</topic><topic>Synapses</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Fiona B</creatorcontrib><creatorcontrib>Franciosi, Sonia</creatorcontrib><creatorcontrib>Spreeuw, Amanda</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Sanders, Shaun</creatorcontrib><creatorcontrib>Tam, Natalie C M</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Singaraja, Roshni R</creatorcontrib><creatorcontrib>Zhang, Weining</creatorcontrib><creatorcontrib>Bissada, Nagat</creatorcontrib><creatorcontrib>Kay, Chris</creatorcontrib><creatorcontrib>Hayden, Michael R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Fiona B</au><au>Franciosi, Sonia</au><au>Spreeuw, Amanda</au><au>Deng, Yu</au><au>Sanders, Shaun</au><au>Tam, Natalie C M</au><au>Huang, Kun</au><au>Singaraja, Roshni R</au><au>Zhang, Weining</au><au>Bissada, Nagat</au><au>Kay, Chris</au><au>Hayden, Michael R</au><au>Li, Xiao-Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e36315</spage><epage>e36315</epage><pages>e36315-e36315</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14-/-) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14-/- model in order to confirm that the defects seen in Hip14-/- mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14-/- model. Our findings yield important insights into HIP14 function in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22649491</pmid><doi>10.1371/journal.pone.0036315</doi><tpages>e36315</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-05, Vol.7 (5), p.e36315-e36315 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325012563 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acyltransferases - deficiency Acyltransferases - genetics Acyltransferases - metabolism Acyltransferases - pharmacology Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Adaptor Proteins, Signal Transducing - pharmacology Alzheimer's disease Analysis of Variance Animals Bacterial artificial chromosomes Biology Blotting, Western Body Weight Cell death Chromosomes, Artificial, Bacterial - genetics Crosses, Genetic Defects DNA Primers - genetics Enzymes Genetic engineering Genetics Human behavior Humans Huntingtin Huntington's disease Huntingtons disease Immunohistochemistry Lipoylation Locomotion - drug effects Low level Medicine Mice Mice, Knockout Mice, Transgenic Mutagenesis Mutation Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Nerve Tissue Proteins - pharmacology Neurophysiology Pathogenesis Polymerase Chain Reaction Protein expression Proteins Real-Time Polymerase Chain Reaction Rotarod Performance Test siRNA Substrates Synapses Transgenic mice |
title | Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20levels%20of%20human%20HIP14%20are%20sufficient%20to%20rescue%20neuropathological,%20behavioural,%20and%20enzymatic%20defects%20due%20to%20loss%20of%20murine%20HIP14%20in%20Hip14-/-%20mice&rft.jtitle=PloS%20one&rft.au=Young,%20Fiona%20B&rft.date=2012-05-23&rft.volume=7&rft.issue=5&rft.spage=e36315&rft.epage=e36315&rft.pages=e36315-e36315&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036315&rft_dat=%3Cgale_plos_%3EA477046389%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325012563&rft_id=info:pmid/22649491&rft_galeid=A477046389&rft_doaj_id=oai_doaj_org_article_5db8172525484d548ab42c775980e410&rfr_iscdi=true |