Disulfide bridges remain intact while native insulin converts into amyloid fibrils
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with pro...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-06, Vol.7 (6), p.e36989-e36989 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e36989 |
---|---|
container_issue | 6 |
container_start_page | e36989 |
container_title | PloS one |
container_volume | 7 |
creator | Kurouski, Dmitry Washington, Jacqueline Ozbil, Mehmet Prabhakar, Rajeev Shekhtman, Alexander Lednev, Igor K |
description | Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin. |
doi_str_mv | 10.1371/journal.pone.0036989 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325002743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477116704</galeid><doaj_id>oai_doaj_org_article_782d15943a5d45f9841fc4e9fc69de80</doaj_id><sourcerecordid>A477116704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-60a1841ed371902a1c41fddd89b2190b07ab5b735f4eaddc47afc39ccedfccf53</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK1-A9EBQfRh12SSTGZehFJvC4VCvbyGTHKymyU7WZPMar-9WXdadqQPkoeEk9_5n2tRPMdojgnH79Z-CL10863vYY4QqdumfVCc4pZUs7pC5OHR-6R4EuMaIUaaun5cnFRVzRnl7LS4_mDj4IzVUHbB6iXEMsBG2r60fZIqlb9W1kHZy2R3kG0Zzn_K9zsIKe4hX8rNjfNWl8ZmCRefFo-MdBGejfdZ8f3Tx28XX2aXV58XF-eXM1W3VZrVSOKGYtC5mBZVEiuKjda6absqGzrEZcc6TpihILVWlEujSKsUaKOUYeSseHnQ3TofxdiOKDCpGEIVpyQTiwOhvVyLbbAbGW6El1b8NfiwFDIkqxwI3lQas5YSyTRlps2ZGUWhNTlZDQ3KWu_HaEO3Aa2gT0G6iej0p7crsfQ7QUjNmgZngTejQPA_B4hJbGxU4JzswQ85b4TbGvOG7St79Q96f3UjtZS5ANsbn-Oqvag4p5xjXHNEMzW_h8pHw8bmOYLJ8506vJ04ZCbB77SUQ4xi8fX6_9mrH1P29RG7AunSKno3JOv7OAXpAVTBxxjA3DUZI7Ff_dtuiP3qi3H1s9uL4wHdOd3uOvkDAYL_dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325002743</pqid></control><display><type>article</type><title>Disulfide bridges remain intact while native insulin converts into amyloid fibrils</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Kurouski, Dmitry ; Washington, Jacqueline ; Ozbil, Mehmet ; Prabhakar, Rajeev ; Shekhtman, Alexander ; Lednev, Igor K</creator><creatorcontrib>Kurouski, Dmitry ; Washington, Jacqueline ; Ozbil, Mehmet ; Prabhakar, Rajeev ; Shekhtman, Alexander ; Lednev, Igor K</creatorcontrib><description>Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036989</identifier><identifier>PMID: 22675475</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Algorithms ; Amino Acid Sequence ; Amino acids ; Amino Acids - metabolism ; Amyloid - metabolism ; Animals ; Bioinformatics ; Biology ; Bonds (Securities) ; Cattle ; Chemical bonds ; Chemistry ; Deuterium ; Deuterium Exchange Measurement ; Diabetes therapy ; Disease ; Distributed processing ; Disulfide bonds ; Disulfides - metabolism ; Drugs ; Fibrils ; Free radicals ; Humans ; Hydration ; Hydrogen ; Hydrogen-deuterium exchange ; Insulin ; Insulin - chemistry ; Insulin - metabolism ; Magnetic resonance ; Magnetic Resonance Spectroscopy ; Medicine ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Organs ; Phenylalanine ; Polypeptides ; Protein folding ; Protein Multimerization ; Protein structure ; Protein Structure, Secondary ; Proteins ; Psittacula krameri ; Resonance ; Signal transduction ; Solutions ; Spectroscopy ; Studies ; Tissues ; Tyrosine</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e36989-e36989</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Kurouski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kurouski et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-60a1841ed371902a1c41fddd89b2190b07ab5b735f4eaddc47afc39ccedfccf53</citedby><cites>FETCH-LOGICAL-c692t-60a1841ed371902a1c41fddd89b2190b07ab5b735f4eaddc47afc39ccedfccf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22675475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurouski, Dmitry</creatorcontrib><creatorcontrib>Washington, Jacqueline</creatorcontrib><creatorcontrib>Ozbil, Mehmet</creatorcontrib><creatorcontrib>Prabhakar, Rajeev</creatorcontrib><creatorcontrib>Shekhtman, Alexander</creatorcontrib><creatorcontrib>Lednev, Igor K</creatorcontrib><title>Disulfide bridges remain intact while native insulin converts into amyloid fibrils</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.</description><subject>Acids</subject><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Amyloid - metabolism</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Bonds (Securities)</subject><subject>Cattle</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Deuterium</subject><subject>Deuterium Exchange Measurement</subject><subject>Diabetes therapy</subject><subject>Disease</subject><subject>Distributed processing</subject><subject>Disulfide bonds</subject><subject>Disulfides - metabolism</subject><subject>Drugs</subject><subject>Fibrils</subject><subject>Free radicals</subject><subject>Humans</subject><subject>Hydration</subject><subject>Hydrogen</subject><subject>Hydrogen-deuterium exchange</subject><subject>Insulin</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medicine</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Organs</subject><subject>Phenylalanine</subject><subject>Polypeptides</subject><subject>Protein folding</subject><subject>Protein Multimerization</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Psittacula krameri</subject><subject>Resonance</subject><subject>Signal transduction</subject><subject>Solutions</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Tissues</subject><subject>Tyrosine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEUxwdRbK1-A9EBQfRh12SSTGZehFJvC4VCvbyGTHKymyU7WZPMar-9WXdadqQPkoeEk9_5n2tRPMdojgnH79Z-CL10863vYY4QqdumfVCc4pZUs7pC5OHR-6R4EuMaIUaaun5cnFRVzRnl7LS4_mDj4IzVUHbB6iXEMsBG2r60fZIqlb9W1kHZy2R3kG0Zzn_K9zsIKe4hX8rNjfNWl8ZmCRefFo-MdBGejfdZ8f3Tx28XX2aXV58XF-eXM1W3VZrVSOKGYtC5mBZVEiuKjda6absqGzrEZcc6TpihILVWlEujSKsUaKOUYeSseHnQ3TofxdiOKDCpGEIVpyQTiwOhvVyLbbAbGW6El1b8NfiwFDIkqxwI3lQas5YSyTRlps2ZGUWhNTlZDQ3KWu_HaEO3Aa2gT0G6iej0p7crsfQ7QUjNmgZngTejQPA_B4hJbGxU4JzswQ85b4TbGvOG7St79Q96f3UjtZS5ANsbn-Oqvag4p5xjXHNEMzW_h8pHw8bmOYLJ8506vJ04ZCbB77SUQ4xi8fX6_9mrH1P29RG7AunSKno3JOv7OAXpAVTBxxjA3DUZI7Ff_dtuiP3qi3H1s9uL4wHdOd3uOvkDAYL_dw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Kurouski, Dmitry</creator><creator>Washington, Jacqueline</creator><creator>Ozbil, Mehmet</creator><creator>Prabhakar, Rajeev</creator><creator>Shekhtman, Alexander</creator><creator>Lednev, Igor K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>Disulfide bridges remain intact while native insulin converts into amyloid fibrils</title><author>Kurouski, Dmitry ; Washington, Jacqueline ; Ozbil, Mehmet ; Prabhakar, Rajeev ; Shekhtman, Alexander ; Lednev, Igor K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-60a1841ed371902a1c41fddd89b2190b07ab5b735f4eaddc47afc39ccedfccf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids</topic><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Amyloid - metabolism</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Bonds (Securities)</topic><topic>Cattle</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Deuterium</topic><topic>Deuterium Exchange Measurement</topic><topic>Diabetes therapy</topic><topic>Disease</topic><topic>Distributed processing</topic><topic>Disulfide bonds</topic><topic>Disulfides - metabolism</topic><topic>Drugs</topic><topic>Fibrils</topic><topic>Free radicals</topic><topic>Humans</topic><topic>Hydration</topic><topic>Hydrogen</topic><topic>Hydrogen-deuterium exchange</topic><topic>Insulin</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medicine</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Organs</topic><topic>Phenylalanine</topic><topic>Polypeptides</topic><topic>Protein folding</topic><topic>Protein Multimerization</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Psittacula krameri</topic><topic>Resonance</topic><topic>Signal transduction</topic><topic>Solutions</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Tissues</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurouski, Dmitry</creatorcontrib><creatorcontrib>Washington, Jacqueline</creatorcontrib><creatorcontrib>Ozbil, Mehmet</creatorcontrib><creatorcontrib>Prabhakar, Rajeev</creatorcontrib><creatorcontrib>Shekhtman, Alexander</creatorcontrib><creatorcontrib>Lednev, Igor K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurouski, Dmitry</au><au>Washington, Jacqueline</au><au>Ozbil, Mehmet</au><au>Prabhakar, Rajeev</au><au>Shekhtman, Alexander</au><au>Lednev, Igor K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disulfide bridges remain intact while native insulin converts into amyloid fibrils</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e36989</spage><epage>e36989</epage><pages>e36989-e36989</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22675475</pmid><doi>10.1371/journal.pone.0036989</doi><tpages>e36989</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-06, Vol.7 (6), p.e36989-e36989 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325002743 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acids Algorithms Amino Acid Sequence Amino acids Amino Acids - metabolism Amyloid - metabolism Animals Bioinformatics Biology Bonds (Securities) Cattle Chemical bonds Chemistry Deuterium Deuterium Exchange Measurement Diabetes therapy Disease Distributed processing Disulfide bonds Disulfides - metabolism Drugs Fibrils Free radicals Humans Hydration Hydrogen Hydrogen-deuterium exchange Insulin Insulin - chemistry Insulin - metabolism Magnetic resonance Magnetic Resonance Spectroscopy Medicine Molecular Dynamics Simulation Molecular Sequence Data Molecular structure NMR Nuclear magnetic resonance Nuclear magnetic resonance spectroscopy Organs Phenylalanine Polypeptides Protein folding Protein Multimerization Protein structure Protein Structure, Secondary Proteins Psittacula krameri Resonance Signal transduction Solutions Spectroscopy Studies Tissues Tyrosine |
title | Disulfide bridges remain intact while native insulin converts into amyloid fibrils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disulfide%20bridges%20remain%20intact%20while%20native%20insulin%20converts%20into%20amyloid%20fibrils&rft.jtitle=PloS%20one&rft.au=Kurouski,%20Dmitry&rft.date=2012-06-01&rft.volume=7&rft.issue=6&rft.spage=e36989&rft.epage=e36989&rft.pages=e36989-e36989&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036989&rft_dat=%3Cgale_plos_%3EA477116704%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325002743&rft_id=info:pmid/22675475&rft_galeid=A477116704&rft_doaj_id=oai_doaj_org_article_782d15943a5d45f9841fc4e9fc69de80&rfr_iscdi=true |