High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo

In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of actio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-05, Vol.7 (5), p.e36583
Hauptverfasser: Pasco, Matthieu Y, Léopold, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e36583
container_title PloS one
container_volume 7
creator Pasco, Matthieu Y
Léopold, Pierre
description In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.
doi_str_mv 10.1371/journal.pone.0036583
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324610022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477130370</galeid><doaj_id>oai_doaj_org_article_6e8b523002484f9d959c0d0bfc857816</doaj_id><sourcerecordid>A477130370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c825t-4824a9def238e82f02db71dd5810f6908f7ca777c730fb1eac2d21bfd18cad933</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgrgPM-bSNumLMKyXGRhc8PYkhDSXNkMmmU3aRf30ZpzuMl32QfKQcPL7_5NzkpNlzyGYQ0zg240fguN2vvNOzQHAVUnxg-wU1hjNKgTww6P1SfYkxg0AJaZV9Tg7QaisCKzIafZzadouj0PLw8w4OQglc-PiYI3Lg4om9twJlUL5--Cj33XG8rRhjYq5d3nfqdyanRd8L_ishsBtvuZ_eDDW-qfZI81tVM_G-Sz7_vHDt4vlbH35aXWxWM8ERWU_KygqeC2VRpgqijRAsiFQypJCoKsaUE0EJ4QIgoFuoOICSQQbLSEVXNYYn2UvD7476yMbCxMZxKioIAAIJWJ1IKTnG7YLZsvDb-a5Yf8CPrSMh94Iq1ilaFMinGQFLXQt67IWQIJGC1oSCqvk9W48bWi2Sgrl-pT1xHS640zHWn_NMC7SVYpkcH4w6O7Ilos128cAIFWFEb6GiX0zHhb81aBiz7YmCmUtd8oPKUdES1Cn56cJfXUHvb8SI9XylKxx2qc7ir0pWxSEQAwwAYma30OlIdXWiPTjtEnxieB8IkhMr371LR9iZKuvX_6fvfwxZV8fsZ3itu-it0NvvItTsDiAIv3TGJS-rSwEbN8wN9Vg-4ZhY8Mk2Yvjx7wV3XQI_gvXpA7w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324610022</pqid></control><display><type>article</type><title>High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pasco, Matthieu Y ; Léopold, Pierre</creator><contributor>Shingleton, Alexander W.</contributor><creatorcontrib>Pasco, Matthieu Y ; Léopold, Pierre ; Shingleton, Alexander W.</creatorcontrib><description>In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036583</identifier><identifier>PMID: 22567167</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Animals ; Biology ; Blood-brain barrier ; c-Jun amino-terminal kinase ; Carbohydrates ; Development ; Development Biology ; Diabetes ; Diabetes mellitus ; Diet ; Dietary Sucrose ; Dietary Sucrose - adverse effects ; Drosophila ; Drosophila - drug effects ; Drosophila - growth &amp; development ; Drosophila - metabolism ; Drosophila Proteins ; Drosophila Proteins - metabolism ; Energy ; Energy storage ; Feeding ; Glucose ; Glycerol ; Homeostasis ; Homology ; Insects ; Insulin ; Insulin Resistance ; Insulin Resistance - physiology ; Insulin-like growth factor I ; Insulin-like growth factors ; JNK protein ; Kinases ; Larva ; Larva - drug effects ; Larva - growth &amp; development ; Larva - metabolism ; Larval development ; Life Sciences ; Lipocalin ; Lipocalins ; Lipocalins - metabolism ; Metabolic disorders ; Metabolism ; Molecular modelling ; Mutation ; Obesity ; Peptides ; Physiology ; Pleiotropy ; Protein binding ; Proteins ; Receptors ; Reproduction ; Retinoids ; Retinol-binding protein ; Rodents ; Signaling ; Sucrose ; Sugar ; Vitamin A</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e36583</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Pasco, Léopold. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Pasco, Léopold. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c825t-4824a9def238e82f02db71dd5810f6908f7ca777c730fb1eac2d21bfd18cad933</citedby><cites>FETCH-LOGICAL-c825t-4824a9def238e82f02db71dd5810f6908f7ca777c730fb1eac2d21bfd18cad933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342234/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342234/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22567167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00766323$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Shingleton, Alexander W.</contributor><creatorcontrib>Pasco, Matthieu Y</creatorcontrib><creatorcontrib>Léopold, Pierre</creatorcontrib><title>High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.</description><subject>Aging</subject><subject>Animals</subject><subject>Biology</subject><subject>Blood-brain barrier</subject><subject>c-Jun amino-terminal kinase</subject><subject>Carbohydrates</subject><subject>Development</subject><subject>Development Biology</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diet</subject><subject>Dietary Sucrose</subject><subject>Dietary Sucrose - adverse effects</subject><subject>Drosophila</subject><subject>Drosophila - drug effects</subject><subject>Drosophila - growth &amp; development</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins</subject><subject>Drosophila Proteins - metabolism</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Feeding</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Insects</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-like growth factors</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Larva</subject><subject>Larva - drug effects</subject><subject>Larva - growth &amp; development</subject><subject>Larva - metabolism</subject><subject>Larval development</subject><subject>Life Sciences</subject><subject>Lipocalin</subject><subject>Lipocalins</subject><subject>Lipocalins - metabolism</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Obesity</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Pleiotropy</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Reproduction</subject><subject>Retinoids</subject><subject>Retinol-binding protein</subject><subject>Rodents</subject><subject>Signaling</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Vitamin A</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgrgPM-bSNumLMKyXGRhc8PYkhDSXNkMmmU3aRf30ZpzuMl32QfKQcPL7_5NzkpNlzyGYQ0zg240fguN2vvNOzQHAVUnxg-wU1hjNKgTww6P1SfYkxg0AJaZV9Tg7QaisCKzIafZzadouj0PLw8w4OQglc-PiYI3Lg4om9twJlUL5--Cj33XG8rRhjYq5d3nfqdyanRd8L_ishsBtvuZ_eDDW-qfZI81tVM_G-Sz7_vHDt4vlbH35aXWxWM8ERWU_KygqeC2VRpgqijRAsiFQypJCoKsaUE0EJ4QIgoFuoOICSQQbLSEVXNYYn2UvD7476yMbCxMZxKioIAAIJWJ1IKTnG7YLZsvDb-a5Yf8CPrSMh94Iq1ilaFMinGQFLXQt67IWQIJGC1oSCqvk9W48bWi2Sgrl-pT1xHS640zHWn_NMC7SVYpkcH4w6O7Ilos128cAIFWFEb6GiX0zHhb81aBiz7YmCmUtd8oPKUdES1Cn56cJfXUHvb8SI9XylKxx2qc7ir0pWxSEQAwwAYma30OlIdXWiPTjtEnxieB8IkhMr371LR9iZKuvX_6fvfwxZV8fsZ3itu-it0NvvItTsDiAIv3TGJS-rSwEbN8wN9Vg-4ZhY8Mk2Yvjx7wV3XQI_gvXpA7w</recordid><startdate>20120502</startdate><enddate>20120502</enddate><creator>Pasco, Matthieu Y</creator><creator>Léopold, Pierre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7TK</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120502</creationdate><title>High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo</title><author>Pasco, Matthieu Y ; Léopold, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c825t-4824a9def238e82f02db71dd5810f6908f7ca777c730fb1eac2d21bfd18cad933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Biology</topic><topic>Blood-brain barrier</topic><topic>c-Jun amino-terminal kinase</topic><topic>Carbohydrates</topic><topic>Development</topic><topic>Development Biology</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diet</topic><topic>Dietary Sucrose</topic><topic>Dietary Sucrose - adverse effects</topic><topic>Drosophila</topic><topic>Drosophila - drug effects</topic><topic>Drosophila - growth &amp; development</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins</topic><topic>Drosophila Proteins - metabolism</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Feeding</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Insects</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-like growth factors</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Larva</topic><topic>Larva - drug effects</topic><topic>Larva - growth &amp; development</topic><topic>Larva - metabolism</topic><topic>Larval development</topic><topic>Life Sciences</topic><topic>Lipocalin</topic><topic>Lipocalins</topic><topic>Lipocalins - metabolism</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Obesity</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Pleiotropy</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Reproduction</topic><topic>Retinoids</topic><topic>Retinol-binding protein</topic><topic>Rodents</topic><topic>Signaling</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Vitamin A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasco, Matthieu Y</creatorcontrib><creatorcontrib>Léopold, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasco, Matthieu Y</au><au>Léopold, Pierre</au><au>Shingleton, Alexander W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-02</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e36583</spage><pages>e36583-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22567167</pmid><doi>10.1371/journal.pone.0036583</doi><tpages>e36583</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-05, Vol.7 (5), p.e36583
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1324610022
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Aging
Animals
Biology
Blood-brain barrier
c-Jun amino-terminal kinase
Carbohydrates
Development
Development Biology
Diabetes
Diabetes mellitus
Diet
Dietary Sucrose
Dietary Sucrose - adverse effects
Drosophila
Drosophila - drug effects
Drosophila - growth & development
Drosophila - metabolism
Drosophila Proteins
Drosophila Proteins - metabolism
Energy
Energy storage
Feeding
Glucose
Glycerol
Homeostasis
Homology
Insects
Insulin
Insulin Resistance
Insulin Resistance - physiology
Insulin-like growth factor I
Insulin-like growth factors
JNK protein
Kinases
Larva
Larva - drug effects
Larva - growth & development
Larva - metabolism
Larval development
Life Sciences
Lipocalin
Lipocalins
Lipocalins - metabolism
Metabolic disorders
Metabolism
Molecular modelling
Mutation
Obesity
Peptides
Physiology
Pleiotropy
Protein binding
Proteins
Receptors
Reproduction
Retinoids
Retinol-binding protein
Rodents
Signaling
Sucrose
Sugar
Vitamin A
title High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20sugar-induced%20insulin%20resistance%20in%20Drosophila%20relies%20on%20the%20lipocalin%20Neural%20Lazarillo&rft.jtitle=PloS%20one&rft.au=Pasco,%20Matthieu%20Y&rft.date=2012-05-02&rft.volume=7&rft.issue=5&rft.spage=e36583&rft.pages=e36583-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036583&rft_dat=%3Cgale_plos_%3EA477130370%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324610022&rft_id=info:pmid/22567167&rft_galeid=A477130370&rft_doaj_id=oai_doaj_org_article_6e8b523002484f9d959c0d0bfc857816&rfr_iscdi=true