Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI

A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-05, Vol.7 (5), p.e36568-e36568
Hauptverfasser: Luo, Cheng, Guo, Zhi-wei, Lai, Yong-xiu, Liao, Wei, Liu, Qiang, Kendrick, Keith M, Yao, De-zhong, Li, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e36568
container_issue 5
container_start_page e36568
container_title PloS one
container_volume 7
creator Luo, Cheng
Guo, Zhi-wei
Lai, Yong-xiu
Liao, Wei
Liu, Qiang
Kendrick, Keith M
Yao, De-zhong
Li, Hong
description A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.
doi_str_mv 10.1371/journal.pone.0036568
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324602239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477127425</galeid><doaj_id>oai_doaj_org_article_5df252521bd44d96b241cbc22d7045bf</doaj_id><sourcerecordid>A477127425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-461c954ab123cb9365f253f2ddb0d2f871acca6994f5203473f98a0c0bd8ccad3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsYtPOfUCqaoorNSqUjncWo7tZF0SO7UdoG_PbDetNqgXyBeJPN_843_sSZKXGK0wLfCHKzd6K7rV4KxeIUTzLC8fJYe4omSZE0Qf7_0fJM9CuEIoo2WeP00OCMnKnBXlYXJ9PgYjRZdGL4w1tk2NVaPUIW1GK6NxUCIdOhGikSbeQDQdtJd6iCMEhFVp76LzqdXxt_M_wxEQwbSbCALe9anXkGnbZYgi6vT0_HL9PHnSiC7oF9N3kXw__fTt5Mvy7OLz-uT4bCmLrIxLlmNZZUzUmFBZV2CvIRltiFI1UqQpCyykFHlVsSYDh6ygTVUKJFGtSggoukhe73SHzgU-dStwTAnLESG0AmK9I5QTV3zwphf-hjth-O2G8y0XHnx3mmcKqsPCtWJMVXlNGJa1JEQViGV1A1ofp2pj3WsltYWGdjPRecSaDW_dL04pywtwtkjeTQLeXY_QNd6bIHXXCavdCOdGmFYEl3DTi-TNP-jD7iaqFWDA2MZBXbkV5cesKDAp2G3Z1QMULKV7I-FpNQb2ZwnvZwnARP0ntmIMga-_Xv4_e_Fjzr7dYzdadHETXDdun2CYg2wHSu9C8Lq5bzJGfDsZd93g28ng02RA2qv9C7pPuhsF-hfmowpC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324602239</pqid></control><display><type>article</type><title>Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Luo, Cheng ; Guo, Zhi-wei ; Lai, Yong-xiu ; Liao, Wei ; Liu, Qiang ; Kendrick, Keith M ; Yao, De-zhong ; Li, Hong</creator><contributor>He, Yong</contributor><creatorcontrib>Luo, Cheng ; Guo, Zhi-wei ; Lai, Yong-xiu ; Liao, Wei ; Liu, Qiang ; Kendrick, Keith M ; Yao, De-zhong ; Li, Hong ; He, Yong</creatorcontrib><description>A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036568</identifier><identifier>PMID: 22586478</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Auditory Cortex - physiology ; Auditory plasticity ; Biology ; Brain ; Brain Mapping ; Causality ; Cognition &amp; reasoning ; Consolidation ; Cortex (auditory) ; Cortex (somatosensory) ; Education ; Female ; Functional integration ; Functional Laterality ; Functional magnetic resonance imaging ; Functional plasticity ; Humans ; Image Processing, Computer-Assisted ; Inflow ; Laboratories ; Life sciences ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Motor Cortex - physiology ; Music ; Musical performances ; Musicians ; Musicians &amp; conductors ; Neural networks ; Neuroimaging ; Neurosciences ; Outflow ; Parietal Lobe - physiology ; Seeds ; Sensorimotor integration ; Sensory integration ; Somatosensory Cortex - physiology ; Studies ; System effectiveness ; Time series ; Training ; Visual cortex</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e36568-e36568</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Luo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Luo et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-461c954ab123cb9365f253f2ddb0d2f871acca6994f5203473f98a0c0bd8ccad3</citedby><cites>FETCH-LOGICAL-c758t-461c954ab123cb9365f253f2ddb0d2f871acca6994f5203473f98a0c0bd8ccad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22586478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>He, Yong</contributor><creatorcontrib>Luo, Cheng</creatorcontrib><creatorcontrib>Guo, Zhi-wei</creatorcontrib><creatorcontrib>Lai, Yong-xiu</creatorcontrib><creatorcontrib>Liao, Wei</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Kendrick, Keith M</creatorcontrib><creatorcontrib>Yao, De-zhong</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><title>Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.</description><subject>Auditory Cortex - physiology</subject><subject>Auditory plasticity</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Causality</subject><subject>Cognition &amp; reasoning</subject><subject>Consolidation</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Education</subject><subject>Female</subject><subject>Functional integration</subject><subject>Functional Laterality</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional plasticity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Inflow</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Motor Cortex - physiology</subject><subject>Music</subject><subject>Musical performances</subject><subject>Musicians</subject><subject>Musicians &amp; conductors</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Outflow</subject><subject>Parietal Lobe - physiology</subject><subject>Seeds</subject><subject>Sensorimotor integration</subject><subject>Sensory integration</subject><subject>Somatosensory Cortex - physiology</subject><subject>Studies</subject><subject>System effectiveness</subject><subject>Time series</subject><subject>Training</subject><subject>Visual cortex</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsYtPOfUCqaoorNSqUjncWo7tZF0SO7UdoG_PbDetNqgXyBeJPN_843_sSZKXGK0wLfCHKzd6K7rV4KxeIUTzLC8fJYe4omSZE0Qf7_0fJM9CuEIoo2WeP00OCMnKnBXlYXJ9PgYjRZdGL4w1tk2NVaPUIW1GK6NxUCIdOhGikSbeQDQdtJd6iCMEhFVp76LzqdXxt_M_wxEQwbSbCALe9anXkGnbZYgi6vT0_HL9PHnSiC7oF9N3kXw__fTt5Mvy7OLz-uT4bCmLrIxLlmNZZUzUmFBZV2CvIRltiFI1UqQpCyykFHlVsSYDh6ygTVUKJFGtSggoukhe73SHzgU-dStwTAnLESG0AmK9I5QTV3zwphf-hjth-O2G8y0XHnx3mmcKqsPCtWJMVXlNGJa1JEQViGV1A1ofp2pj3WsltYWGdjPRecSaDW_dL04pywtwtkjeTQLeXY_QNd6bIHXXCavdCOdGmFYEl3DTi-TNP-jD7iaqFWDA2MZBXbkV5cesKDAp2G3Z1QMULKV7I-FpNQb2ZwnvZwnARP0ntmIMga-_Xv4_e_Fjzr7dYzdadHETXDdun2CYg2wHSu9C8Lq5bzJGfDsZd93g28ng02RA2qv9C7pPuhsF-hfmowpC</recordid><startdate>20120507</startdate><enddate>20120507</enddate><creator>Luo, Cheng</creator><creator>Guo, Zhi-wei</creator><creator>Lai, Yong-xiu</creator><creator>Liao, Wei</creator><creator>Liu, Qiang</creator><creator>Kendrick, Keith M</creator><creator>Yao, De-zhong</creator><creator>Li, Hong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120507</creationdate><title>Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI</title><author>Luo, Cheng ; Guo, Zhi-wei ; Lai, Yong-xiu ; Liao, Wei ; Liu, Qiang ; Kendrick, Keith M ; Yao, De-zhong ; Li, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-461c954ab123cb9365f253f2ddb0d2f871acca6994f5203473f98a0c0bd8ccad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Auditory Cortex - physiology</topic><topic>Auditory plasticity</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Causality</topic><topic>Cognition &amp; reasoning</topic><topic>Consolidation</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Education</topic><topic>Female</topic><topic>Functional integration</topic><topic>Functional Laterality</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional plasticity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Inflow</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Motor Cortex - physiology</topic><topic>Music</topic><topic>Musical performances</topic><topic>Musicians</topic><topic>Musicians &amp; conductors</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Outflow</topic><topic>Parietal Lobe - physiology</topic><topic>Seeds</topic><topic>Sensorimotor integration</topic><topic>Sensory integration</topic><topic>Somatosensory Cortex - physiology</topic><topic>Studies</topic><topic>System effectiveness</topic><topic>Time series</topic><topic>Training</topic><topic>Visual cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Cheng</creatorcontrib><creatorcontrib>Guo, Zhi-wei</creatorcontrib><creatorcontrib>Lai, Yong-xiu</creatorcontrib><creatorcontrib>Liao, Wei</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Kendrick, Keith M</creatorcontrib><creatorcontrib>Yao, De-zhong</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Source (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Cheng</au><au>Guo, Zhi-wei</au><au>Lai, Yong-xiu</au><au>Liao, Wei</au><au>Liu, Qiang</au><au>Kendrick, Keith M</au><au>Yao, De-zhong</au><au>Li, Hong</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-07</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e36568</spage><epage>e36568</epage><pages>e36568-e36568</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22586478</pmid><doi>10.1371/journal.pone.0036568</doi><tpages>e36568</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-05, Vol.7 (5), p.e36568-e36568
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1324602239
source PubMed (Medline); MEDLINE; Public Library of Science; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Auditory Cortex - physiology
Auditory plasticity
Biology
Brain
Brain Mapping
Causality
Cognition & reasoning
Consolidation
Cortex (auditory)
Cortex (somatosensory)
Education
Female
Functional integration
Functional Laterality
Functional magnetic resonance imaging
Functional plasticity
Humans
Image Processing, Computer-Assisted
Inflow
Laboratories
Life sciences
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Motor Cortex - physiology
Music
Musical performances
Musicians
Musicians & conductors
Neural networks
Neuroimaging
Neurosciences
Outflow
Parietal Lobe - physiology
Seeds
Sensorimotor integration
Sensory integration
Somatosensory Cortex - physiology
Studies
System effectiveness
Time series
Training
Visual cortex
title Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Musical%20training%20induces%20functional%20plasticity%20in%20perceptual%20and%20motor%20networks:%20insights%20from%20resting-state%20FMRI&rft.jtitle=PloS%20one&rft.au=Luo,%20Cheng&rft.date=2012-05-07&rft.volume=7&rft.issue=5&rft.spage=e36568&rft.epage=e36568&rft.pages=e36568-e36568&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036568&rft_dat=%3Cgale_plos_%3EA477127425%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324602239&rft_id=info:pmid/22586478&rft_galeid=A477127425&rft_doaj_id=oai_doaj_org_article_5df252521bd44d96b241cbc22d7045bf&rfr_iscdi=true