Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction
Adipose tissue inflammation and dysregulated adipokine secretion are implicated in obesity-related insulin resistance and type 2 diabetes. We evaluated the use of serum adiponectin, an anti-inflammatory adipokine, and several proinflammatory adipokines, as biomarkers of diabetes risk and whether the...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-05, Vol.7 (5), p.e36868-e36868 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e36868 |
---|---|
container_issue | 5 |
container_start_page | e36868 |
container_title | PloS one |
container_volume | 7 |
creator | Woo, Yu-Cho Tso, Annette W K Xu, Aimin Law, Lawrence S C Fong, Carol H Y Lam, Tai-Hing Lo, Su-Vui Wat, Nelson M S Cheung, Bernard M Y Lam, Karen S L |
description | Adipose tissue inflammation and dysregulated adipokine secretion are implicated in obesity-related insulin resistance and type 2 diabetes. We evaluated the use of serum adiponectin, an anti-inflammatory adipokine, and several proinflammatory adipokines, as biomarkers of diabetes risk and whether they add to traditional risk factors in diabetes prediction.
We studied 1300 non-diabetic subjects from the prospective Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS). Serum adiponectin, tumor necrosis factor-alpha receptor 2 (TNF-α R2), interleukin-6 (IL-6), adipocyte-fatty acid binding protein (A-FABP) and high-sensitivity C-reactive protein (hsCRP) were measured in baseline samples.
Seventy-six participants developed diabetes over 5.3 years (median). All five biomarkers significantly improved the log-likelihood of diabetes in a clinical diabetes prediction (CDP) model including age, sex, family history of diabetes, smoking, physical activity, hypertension, waist circumference, fasting glucose and dyslipidaemia. In ROC curve analysis, "adiponectin + TNF-α R2" improved the area under ROC curve (AUC) of the CDP model from 0.802 to 0.830 (P = 0.03), rendering its performance comparable to the "CDP + 2-hour post-OGTT glucose" model (AUC = 0.852, P = 0.30). A biomarker risk score, derived from the number of biomarkers predictive of diabetes (low adiponectin, high TNF-α R2), had similar performance when added to the CDP model (AUC = 0.829 [95% CI: 0.808-0.849]).
The combined use of serum adiponectin and TNF-α R2 as biomarkers provided added value over traditional risk factors for diabetes prediction in Chinese and could be considered as an alternative to the OGTT. |
doi_str_mv | 10.1371/journal.pone.0036868 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324557587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477077205</galeid><doaj_id>oai_doaj_org_article_7f4b4cd66d8347059d431b5a97fa3311</doaj_id><sourcerecordid>A477077205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-eba2928cdc1da6c3970de94150e3a51111698bac5563d7adf196c54f5f025b4d3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISG4yOJD7CQ3SFXFoVKlSpxurYk92XXlxMFOCjwI74uXbqsu6gXJRZzJN__Yk3-K4imjKyZq9uYiLHEEv5rCiCtKhWpUc684ZK3gpeJU3L-1PigepXRBqRSNUg-LA84Vkw1vDovfJ2Ho3IiWLAlJ6EnCuAwErNvqmtmNBEZL5mUIkeRADMkl0oOZQyzBTxsgEQ1O-ZVw4vESfSI_IBEThgkidB7JHAgvN3m7ZAppLn0AS9Z-MSFXzPrWQYczJjJFtC6XDOPj4kEPPuGT3fOo-Pr-3ZeTj-XZ-YfTk-Oz0qiWzyV2wFveGGuYBWVEW1OLbcUkRQGS5Uu1TQdGSiVsDbZnrTKy6mVPuewqK46K51e6kw9J7zqaNBO8krKWTZ2J0yvCBrjQU3QDxF86gNN_AyGuNcTZGY-67quuMlYp24iqprK1lWCdhLbuQQjGstbbXbWlG9AaHOcIfk90_8voNnodLrUQUrSSZ4FXO4EYvi-YZj24ZNB7GDEsed-UyUq1rGkz-uIf9O7T7ag15AO4sQ-5rtmK6uOqrmld8-yZo2J1B5Vvi4Mz2Sa9y_G9hNd7CZmZ8ee8hiUlffr50_-z59_22Ze32A2Cnzcp-GVrmbQPVlfg1q8pYn_TZEb1dnquu6G3Lte76clpz27_oJuk63ERfwC7CBZ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324557587</pqid></control><display><type>article</type><title>Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Woo, Yu-Cho ; Tso, Annette W K ; Xu, Aimin ; Law, Lawrence S C ; Fong, Carol H Y ; Lam, Tai-Hing ; Lo, Su-Vui ; Wat, Nelson M S ; Cheung, Bernard M Y ; Lam, Karen S L</creator><contributor>Wang, Yu</contributor><creatorcontrib>Woo, Yu-Cho ; Tso, Annette W K ; Xu, Aimin ; Law, Lawrence S C ; Fong, Carol H Y ; Lam, Tai-Hing ; Lo, Su-Vui ; Wat, Nelson M S ; Cheung, Bernard M Y ; Lam, Karen S L ; Wang, Yu</creatorcontrib><description>Adipose tissue inflammation and dysregulated adipokine secretion are implicated in obesity-related insulin resistance and type 2 diabetes. We evaluated the use of serum adiponectin, an anti-inflammatory adipokine, and several proinflammatory adipokines, as biomarkers of diabetes risk and whether they add to traditional risk factors in diabetes prediction.
We studied 1300 non-diabetic subjects from the prospective Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS). Serum adiponectin, tumor necrosis factor-alpha receptor 2 (TNF-α R2), interleukin-6 (IL-6), adipocyte-fatty acid binding protein (A-FABP) and high-sensitivity C-reactive protein (hsCRP) were measured in baseline samples.
Seventy-six participants developed diabetes over 5.3 years (median). All five biomarkers significantly improved the log-likelihood of diabetes in a clinical diabetes prediction (CDP) model including age, sex, family history of diabetes, smoking, physical activity, hypertension, waist circumference, fasting glucose and dyslipidaemia. In ROC curve analysis, "adiponectin + TNF-α R2" improved the area under ROC curve (AUC) of the CDP model from 0.802 to 0.830 (P = 0.03), rendering its performance comparable to the "CDP + 2-hour post-OGTT glucose" model (AUC = 0.852, P = 0.30). A biomarker risk score, derived from the number of biomarkers predictive of diabetes (low adiponectin, high TNF-α R2), had similar performance when added to the CDP model (AUC = 0.829 [95% CI: 0.808-0.849]).
The combined use of serum adiponectin and TNF-α R2 as biomarkers provided added value over traditional risk factors for diabetes prediction in Chinese and could be considered as an alternative to the OGTT.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036868</identifier><identifier>PMID: 22615828</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adiponectin ; Adiponectin - blood ; Adipose tissue ; Analysis ; Biology ; Biomarkers ; Blood Glucose - analysis ; C-reactive protein ; Cardiovascular diseases ; Development and progression ; Diabetes mellitus ; Diseases ; Dyslipidemia ; Exercise ; Fatty acid-binding protein ; Fatty acids ; Genetics ; Glucose ; Glucose tolerance test ; Health risk assessment ; Health risks ; Hong Kong ; Humans ; Hypertension ; Inflammation ; Insulin ; Insulin resistance ; Interleukin 6 ; Interleukins ; Mathematical models ; Medical research ; Medicine ; Necrosis ; Obesity ; Physical activity ; Predictions ; Protein binding ; Receptors, Tumor Necrosis Factor, Type II - blood ; Risk analysis ; Risk factors ; Smoking ; Snack foods ; Tumor necrosis factor ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Type 2 diabetes</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e36868-e36868</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Woo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Woo et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-eba2928cdc1da6c3970de94150e3a51111698bac5563d7adf196c54f5f025b4d3</citedby><cites>FETCH-LOGICAL-c692t-eba2928cdc1da6c3970de94150e3a51111698bac5563d7adf196c54f5f025b4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22615828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yu</contributor><creatorcontrib>Woo, Yu-Cho</creatorcontrib><creatorcontrib>Tso, Annette W K</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Law, Lawrence S C</creatorcontrib><creatorcontrib>Fong, Carol H Y</creatorcontrib><creatorcontrib>Lam, Tai-Hing</creatorcontrib><creatorcontrib>Lo, Su-Vui</creatorcontrib><creatorcontrib>Wat, Nelson M S</creatorcontrib><creatorcontrib>Cheung, Bernard M Y</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><title>Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Adipose tissue inflammation and dysregulated adipokine secretion are implicated in obesity-related insulin resistance and type 2 diabetes. We evaluated the use of serum adiponectin, an anti-inflammatory adipokine, and several proinflammatory adipokines, as biomarkers of diabetes risk and whether they add to traditional risk factors in diabetes prediction.
We studied 1300 non-diabetic subjects from the prospective Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS). Serum adiponectin, tumor necrosis factor-alpha receptor 2 (TNF-α R2), interleukin-6 (IL-6), adipocyte-fatty acid binding protein (A-FABP) and high-sensitivity C-reactive protein (hsCRP) were measured in baseline samples.
Seventy-six participants developed diabetes over 5.3 years (median). All five biomarkers significantly improved the log-likelihood of diabetes in a clinical diabetes prediction (CDP) model including age, sex, family history of diabetes, smoking, physical activity, hypertension, waist circumference, fasting glucose and dyslipidaemia. In ROC curve analysis, "adiponectin + TNF-α R2" improved the area under ROC curve (AUC) of the CDP model from 0.802 to 0.830 (P = 0.03), rendering its performance comparable to the "CDP + 2-hour post-OGTT glucose" model (AUC = 0.852, P = 0.30). A biomarker risk score, derived from the number of biomarkers predictive of diabetes (low adiponectin, high TNF-α R2), had similar performance when added to the CDP model (AUC = 0.829 [95% CI: 0.808-0.849]).
The combined use of serum adiponectin and TNF-α R2 as biomarkers provided added value over traditional risk factors for diabetes prediction in Chinese and could be considered as an alternative to the OGTT.</description><subject>Adiponectin</subject><subject>Adiponectin - blood</subject><subject>Adipose tissue</subject><subject>Analysis</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Blood Glucose - analysis</subject><subject>C-reactive protein</subject><subject>Cardiovascular diseases</subject><subject>Development and progression</subject><subject>Diabetes mellitus</subject><subject>Diseases</subject><subject>Dyslipidemia</subject><subject>Exercise</subject><subject>Fatty acid-binding protein</subject><subject>Fatty acids</subject><subject>Genetics</subject><subject>Glucose</subject><subject>Glucose tolerance test</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Hong Kong</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Interleukin 6</subject><subject>Interleukins</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Necrosis</subject><subject>Obesity</subject><subject>Physical activity</subject><subject>Predictions</subject><subject>Protein binding</subject><subject>Receptors, Tumor Necrosis Factor, Type II - blood</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Smoking</subject><subject>Snack foods</subject><subject>Tumor necrosis factor</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Type 2 diabetes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISG4yOJD7CQ3SFXFoVKlSpxurYk92XXlxMFOCjwI74uXbqsu6gXJRZzJN__Yk3-K4imjKyZq9uYiLHEEv5rCiCtKhWpUc684ZK3gpeJU3L-1PigepXRBqRSNUg-LA84Vkw1vDovfJ2Ho3IiWLAlJ6EnCuAwErNvqmtmNBEZL5mUIkeRADMkl0oOZQyzBTxsgEQ1O-ZVw4vESfSI_IBEThgkidB7JHAgvN3m7ZAppLn0AS9Z-MSFXzPrWQYczJjJFtC6XDOPj4kEPPuGT3fOo-Pr-3ZeTj-XZ-YfTk-Oz0qiWzyV2wFveGGuYBWVEW1OLbcUkRQGS5Uu1TQdGSiVsDbZnrTKy6mVPuewqK46K51e6kw9J7zqaNBO8krKWTZ2J0yvCBrjQU3QDxF86gNN_AyGuNcTZGY-67quuMlYp24iqprK1lWCdhLbuQQjGstbbXbWlG9AaHOcIfk90_8voNnodLrUQUrSSZ4FXO4EYvi-YZj24ZNB7GDEsed-UyUq1rGkz-uIf9O7T7ag15AO4sQ-5rtmK6uOqrmld8-yZo2J1B5Vvi4Mz2Sa9y_G9hNd7CZmZ8ee8hiUlffr50_-z59_22Ze32A2Cnzcp-GVrmbQPVlfg1q8pYn_TZEb1dnquu6G3Lte76clpz27_oJuk63ERfwC7CBZ0</recordid><startdate>20120516</startdate><enddate>20120516</enddate><creator>Woo, Yu-Cho</creator><creator>Tso, Annette W K</creator><creator>Xu, Aimin</creator><creator>Law, Lawrence S C</creator><creator>Fong, Carol H Y</creator><creator>Lam, Tai-Hing</creator><creator>Lo, Su-Vui</creator><creator>Wat, Nelson M S</creator><creator>Cheung, Bernard M Y</creator><creator>Lam, Karen S L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120516</creationdate><title>Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction</title><author>Woo, Yu-Cho ; Tso, Annette W K ; Xu, Aimin ; Law, Lawrence S C ; Fong, Carol H Y ; Lam, Tai-Hing ; Lo, Su-Vui ; Wat, Nelson M S ; Cheung, Bernard M Y ; Lam, Karen S L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-eba2928cdc1da6c3970de94150e3a51111698bac5563d7adf196c54f5f025b4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiponectin</topic><topic>Adiponectin - blood</topic><topic>Adipose tissue</topic><topic>Analysis</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Blood Glucose - analysis</topic><topic>C-reactive protein</topic><topic>Cardiovascular diseases</topic><topic>Development and progression</topic><topic>Diabetes mellitus</topic><topic>Diseases</topic><topic>Dyslipidemia</topic><topic>Exercise</topic><topic>Fatty acid-binding protein</topic><topic>Fatty acids</topic><topic>Genetics</topic><topic>Glucose</topic><topic>Glucose tolerance test</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Hong Kong</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Interleukin 6</topic><topic>Interleukins</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Necrosis</topic><topic>Obesity</topic><topic>Physical activity</topic><topic>Predictions</topic><topic>Protein binding</topic><topic>Receptors, Tumor Necrosis Factor, Type II - blood</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Smoking</topic><topic>Snack foods</topic><topic>Tumor necrosis factor</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Yu-Cho</creatorcontrib><creatorcontrib>Tso, Annette W K</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Law, Lawrence S C</creatorcontrib><creatorcontrib>Fong, Carol H Y</creatorcontrib><creatorcontrib>Lam, Tai-Hing</creatorcontrib><creatorcontrib>Lo, Su-Vui</creatorcontrib><creatorcontrib>Wat, Nelson M S</creatorcontrib><creatorcontrib>Cheung, Bernard M Y</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Yu-Cho</au><au>Tso, Annette W K</au><au>Xu, Aimin</au><au>Law, Lawrence S C</au><au>Fong, Carol H Y</au><au>Lam, Tai-Hing</au><au>Lo, Su-Vui</au><au>Wat, Nelson M S</au><au>Cheung, Bernard M Y</au><au>Lam, Karen S L</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-16</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e36868</spage><epage>e36868</epage><pages>e36868-e36868</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Adipose tissue inflammation and dysregulated adipokine secretion are implicated in obesity-related insulin resistance and type 2 diabetes. We evaluated the use of serum adiponectin, an anti-inflammatory adipokine, and several proinflammatory adipokines, as biomarkers of diabetes risk and whether they add to traditional risk factors in diabetes prediction.
We studied 1300 non-diabetic subjects from the prospective Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS). Serum adiponectin, tumor necrosis factor-alpha receptor 2 (TNF-α R2), interleukin-6 (IL-6), adipocyte-fatty acid binding protein (A-FABP) and high-sensitivity C-reactive protein (hsCRP) were measured in baseline samples.
Seventy-six participants developed diabetes over 5.3 years (median). All five biomarkers significantly improved the log-likelihood of diabetes in a clinical diabetes prediction (CDP) model including age, sex, family history of diabetes, smoking, physical activity, hypertension, waist circumference, fasting glucose and dyslipidaemia. In ROC curve analysis, "adiponectin + TNF-α R2" improved the area under ROC curve (AUC) of the CDP model from 0.802 to 0.830 (P = 0.03), rendering its performance comparable to the "CDP + 2-hour post-OGTT glucose" model (AUC = 0.852, P = 0.30). A biomarker risk score, derived from the number of biomarkers predictive of diabetes (low adiponectin, high TNF-α R2), had similar performance when added to the CDP model (AUC = 0.829 [95% CI: 0.808-0.849]).
The combined use of serum adiponectin and TNF-α R2 as biomarkers provided added value over traditional risk factors for diabetes prediction in Chinese and could be considered as an alternative to the OGTT.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22615828</pmid><doi>10.1371/journal.pone.0036868</doi><tpages>e36868</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-05, Vol.7 (5), p.e36868-e36868 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1324557587 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adiponectin Adiponectin - blood Adipose tissue Analysis Biology Biomarkers Blood Glucose - analysis C-reactive protein Cardiovascular diseases Development and progression Diabetes mellitus Diseases Dyslipidemia Exercise Fatty acid-binding protein Fatty acids Genetics Glucose Glucose tolerance test Health risk assessment Health risks Hong Kong Humans Hypertension Inflammation Insulin Insulin resistance Interleukin 6 Interleukins Mathematical models Medical research Medicine Necrosis Obesity Physical activity Predictions Protein binding Receptors, Tumor Necrosis Factor, Type II - blood Risk analysis Risk factors Smoking Snack foods Tumor necrosis factor Tumor necrosis factor-TNF Tumor necrosis factor-α Type 2 diabetes |
title | Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20use%20of%20serum%20adiponectin%20and%20tumor%20necrosis%20factor-alpha%20receptor%202%20levels%20was%20comparable%20to%202-hour%20post-load%20glucose%20in%20diabetes%20prediction&rft.jtitle=PloS%20one&rft.au=Woo,%20Yu-Cho&rft.date=2012-05-16&rft.volume=7&rft.issue=5&rft.spage=e36868&rft.epage=e36868&rft.pages=e36868-e36868&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036868&rft_dat=%3Cgale_plos_%3EA477077205%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324557587&rft_id=info:pmid/22615828&rft_galeid=A477077205&rft_doaj_id=oai_doaj_org_article_7f4b4cd66d8347059d431b5a97fa3311&rfr_iscdi=true |