A multi-functional imaging approach to high-content protein interaction screening
Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore bas...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-04, Vol.7 (4), p.e33231-e33231 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e33231 |
---|---|
container_issue | 4 |
container_start_page | e33231 |
container_title | PloS one |
container_volume | 7 |
creator | Matthews, Daniel R Fruhwirth, Gilbert O Weitsman, Gregory Carlin, Leo M Ofo, Enyinnaya Keppler, Melanie Barber, Paul R Tullis, Iain D C Vojnovic, Borivoj Ng, Tony Ameer-Beg, Simon M |
description | Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging. |
doi_str_mv | 10.1371/journal.pone.0033231 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324444251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477133530</galeid><doaj_id>oai_doaj_org_article_be7dae9c27184a5895f60efb3e0a0048</doaj_id><sourcerecordid>A477133530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c3ed25a1b8b5f0a5f0419e6b457bb993335fca28469ed2dc283fb4c5f5796d8d3</originalsourceid><addsrcrecordid>eNqNkluLnDAYhqW0dLfb_oPSCoXSXjjNwUS9KQxLDwMLS4-3IcZEM2jiJrG0_75xxl3Gshc1iPHzed_4HZLkOQQbiAv4bm8nZ3i_Ga2RGwAwRhg-SM5hhVFGEcAPT_ZnyRPv9wAQXFL6ODlDiAAKADhPvmzTYeqDztRkRNA2OqZ64K02bcrH0VkuujTYtNNtlwlrgjQhjeEgtUl1fHX8IEu9cFKaKHuaPFK89_LZ8rxIfnz88P3yc3Z1_Wl3ub3KBK1QyASWDSIc1mVNFODxzmElaZ2Toq6rCmNMlOCozGkVwUagEqs6F0SRoqJN2eCL5OXRd-ytZ0s1PIMY5fFCBEZidyQay_dsdDEv94dZrtkhYF3LuAta9JLVsmi4rAQqYJlzUlZEUSBVjSXgAORl9Hq_nDbVg2xELIPj_cp0_cXojrX2F5v7QsrZ4M1i4OzNJH1gg_ZC9j030k7xvwGAFUUQ0oi--ge9P7uFanlMQBtl47liNmXbvChgLCAGkdrcQ8XVyEHHfkqlY3wleLsSHHr-O7R88p7tvn39f_b655p9fcJ2kveh87af5uHxazA_gsJZ751Ud0WGgM2Tf1sNNk8-WyY_yl6cNuhOdDvq-C_0VP4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324444251</pqid></control><display><type>article</type><title>A multi-functional imaging approach to high-content protein interaction screening</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Matthews, Daniel R ; Fruhwirth, Gilbert O ; Weitsman, Gregory ; Carlin, Leo M ; Ofo, Enyinnaya ; Keppler, Melanie ; Barber, Paul R ; Tullis, Iain D C ; Vojnovic, Borivoj ; Ng, Tony ; Ameer-Beg, Simon M</creator><contributor>Khan, Rizwan Hasan</contributor><creatorcontrib>Matthews, Daniel R ; Fruhwirth, Gilbert O ; Weitsman, Gregory ; Carlin, Leo M ; Ofo, Enyinnaya ; Keppler, Melanie ; Barber, Paul R ; Tullis, Iain D C ; Vojnovic, Borivoj ; Ng, Tony ; Ameer-Beg, Simon M ; Khan, Rizwan Hasan</creatorcontrib><description>Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0033231</identifier><identifier>PMID: 22506000</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analytical chemistry ; Anisotropy ; Assaying ; Biology ; Biophysics ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Cancer ; Cdc42 protein ; Cell Line, Tumor ; Chemokines ; CXCR4 protein ; Data analysis ; Detection equipment ; Energy transfer ; Fluorescence ; Fluorescence Polarization - instrumentation ; Fluorescence Polarization - methods ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - instrumentation ; Fluorescence Resonance Energy Transfer - methods ; Green Fluorescent Proteins - chemistry ; Humans ; Image processing ; Information processing ; Instrumentation ; Internalization ; Lifetime ; Luminescent Proteins - chemistry ; Medical imaging ; Microscopy ; Oncology ; Photons ; Physics ; Protein interaction ; Protein Interaction Domains and Motifs ; Protein-protein interactions ; Proteins ; Proteins - chemistry ; Receptors, CXCR4 - chemistry ; Recipes ; Red Fluorescent Protein ; Scaling ; Screening ; Sensitivity and Specificity ; Small Molecule Libraries - chemistry ; Studies ; Time correlation functions</subject><ispartof>PloS one, 2012-04, Vol.7 (4), p.e33231-e33231</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Matthews et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Matthews et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c3ed25a1b8b5f0a5f0419e6b457bb993335fca28469ed2dc283fb4c5f5796d8d3</citedby><cites>FETCH-LOGICAL-c692t-c3ed25a1b8b5f0a5f0419e6b457bb993335fca28469ed2dc283fb4c5f5796d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22506000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khan, Rizwan Hasan</contributor><creatorcontrib>Matthews, Daniel R</creatorcontrib><creatorcontrib>Fruhwirth, Gilbert O</creatorcontrib><creatorcontrib>Weitsman, Gregory</creatorcontrib><creatorcontrib>Carlin, Leo M</creatorcontrib><creatorcontrib>Ofo, Enyinnaya</creatorcontrib><creatorcontrib>Keppler, Melanie</creatorcontrib><creatorcontrib>Barber, Paul R</creatorcontrib><creatorcontrib>Tullis, Iain D C</creatorcontrib><creatorcontrib>Vojnovic, Borivoj</creatorcontrib><creatorcontrib>Ng, Tony</creatorcontrib><creatorcontrib>Ameer-Beg, Simon M</creatorcontrib><title>A multi-functional imaging approach to high-content protein interaction screening</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging.</description><subject>Amino acids</subject><subject>Analytical chemistry</subject><subject>Anisotropy</subject><subject>Assaying</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cancer</subject><subject>Cdc42 protein</subject><subject>Cell Line, Tumor</subject><subject>Chemokines</subject><subject>CXCR4 protein</subject><subject>Data analysis</subject><subject>Detection equipment</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence Polarization - instrumentation</subject><subject>Fluorescence Polarization - methods</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - instrumentation</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Humans</subject><subject>Image processing</subject><subject>Information processing</subject><subject>Instrumentation</subject><subject>Internalization</subject><subject>Lifetime</subject><subject>Luminescent Proteins - chemistry</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>Oncology</subject><subject>Photons</subject><subject>Physics</subject><subject>Protein interaction</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Receptors, CXCR4 - chemistry</subject><subject>Recipes</subject><subject>Red Fluorescent Protein</subject><subject>Scaling</subject><subject>Screening</subject><subject>Sensitivity and Specificity</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Studies</subject><subject>Time correlation functions</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluLnDAYhqW0dLfb_oPSCoXSXjjNwUS9KQxLDwMLS4-3IcZEM2jiJrG0_75xxl3Gshc1iPHzed_4HZLkOQQbiAv4bm8nZ3i_Ga2RGwAwRhg-SM5hhVFGEcAPT_ZnyRPv9wAQXFL6ODlDiAAKADhPvmzTYeqDztRkRNA2OqZ64K02bcrH0VkuujTYtNNtlwlrgjQhjeEgtUl1fHX8IEu9cFKaKHuaPFK89_LZ8rxIfnz88P3yc3Z1_Wl3ub3KBK1QyASWDSIc1mVNFODxzmElaZ2Toq6rCmNMlOCozGkVwUagEqs6F0SRoqJN2eCL5OXRd-ytZ0s1PIMY5fFCBEZidyQay_dsdDEv94dZrtkhYF3LuAta9JLVsmi4rAQqYJlzUlZEUSBVjSXgAORl9Hq_nDbVg2xELIPj_cp0_cXojrX2F5v7QsrZ4M1i4OzNJH1gg_ZC9j030k7xvwGAFUUQ0oi--ge9P7uFanlMQBtl47liNmXbvChgLCAGkdrcQ8XVyEHHfkqlY3wleLsSHHr-O7R88p7tvn39f_b655p9fcJ2kveh87af5uHxazA_gsJZ751Ud0WGgM2Tf1sNNk8-WyY_yl6cNuhOdDvq-C_0VP4Q</recordid><startdate>20120410</startdate><enddate>20120410</enddate><creator>Matthews, Daniel R</creator><creator>Fruhwirth, Gilbert O</creator><creator>Weitsman, Gregory</creator><creator>Carlin, Leo M</creator><creator>Ofo, Enyinnaya</creator><creator>Keppler, Melanie</creator><creator>Barber, Paul R</creator><creator>Tullis, Iain D C</creator><creator>Vojnovic, Borivoj</creator><creator>Ng, Tony</creator><creator>Ameer-Beg, Simon M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120410</creationdate><title>A multi-functional imaging approach to high-content protein interaction screening</title><author>Matthews, Daniel R ; Fruhwirth, Gilbert O ; Weitsman, Gregory ; Carlin, Leo M ; Ofo, Enyinnaya ; Keppler, Melanie ; Barber, Paul R ; Tullis, Iain D C ; Vojnovic, Borivoj ; Ng, Tony ; Ameer-Beg, Simon M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c3ed25a1b8b5f0a5f0419e6b457bb993335fca28469ed2dc283fb4c5f5796d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino acids</topic><topic>Analytical chemistry</topic><topic>Anisotropy</topic><topic>Assaying</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cancer</topic><topic>Cdc42 protein</topic><topic>Cell Line, Tumor</topic><topic>Chemokines</topic><topic>CXCR4 protein</topic><topic>Data analysis</topic><topic>Detection equipment</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence Polarization - instrumentation</topic><topic>Fluorescence Polarization - methods</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - instrumentation</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Humans</topic><topic>Image processing</topic><topic>Information processing</topic><topic>Instrumentation</topic><topic>Internalization</topic><topic>Lifetime</topic><topic>Luminescent Proteins - chemistry</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>Oncology</topic><topic>Photons</topic><topic>Physics</topic><topic>Protein interaction</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Receptors, CXCR4 - chemistry</topic><topic>Recipes</topic><topic>Red Fluorescent Protein</topic><topic>Scaling</topic><topic>Screening</topic><topic>Sensitivity and Specificity</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Studies</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, Daniel R</creatorcontrib><creatorcontrib>Fruhwirth, Gilbert O</creatorcontrib><creatorcontrib>Weitsman, Gregory</creatorcontrib><creatorcontrib>Carlin, Leo M</creatorcontrib><creatorcontrib>Ofo, Enyinnaya</creatorcontrib><creatorcontrib>Keppler, Melanie</creatorcontrib><creatorcontrib>Barber, Paul R</creatorcontrib><creatorcontrib>Tullis, Iain D C</creatorcontrib><creatorcontrib>Vojnovic, Borivoj</creatorcontrib><creatorcontrib>Ng, Tony</creatorcontrib><creatorcontrib>Ameer-Beg, Simon M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, Daniel R</au><au>Fruhwirth, Gilbert O</au><au>Weitsman, Gregory</au><au>Carlin, Leo M</au><au>Ofo, Enyinnaya</au><au>Keppler, Melanie</au><au>Barber, Paul R</au><au>Tullis, Iain D C</au><au>Vojnovic, Borivoj</au><au>Ng, Tony</au><au>Ameer-Beg, Simon M</au><au>Khan, Rizwan Hasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-functional imaging approach to high-content protein interaction screening</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-04-10</date><risdate>2012</risdate><volume>7</volume><issue>4</issue><spage>e33231</spage><epage>e33231</epage><pages>e33231-e33231</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22506000</pmid><doi>10.1371/journal.pone.0033231</doi><tpages>e33231</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-04, Vol.7 (4), p.e33231-e33231 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1324444251 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Analytical chemistry Anisotropy Assaying Biology Biophysics Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Cancer Cdc42 protein Cell Line, Tumor Chemokines CXCR4 protein Data analysis Detection equipment Energy transfer Fluorescence Fluorescence Polarization - instrumentation Fluorescence Polarization - methods Fluorescence resonance energy transfer Fluorescence Resonance Energy Transfer - instrumentation Fluorescence Resonance Energy Transfer - methods Green Fluorescent Proteins - chemistry Humans Image processing Information processing Instrumentation Internalization Lifetime Luminescent Proteins - chemistry Medical imaging Microscopy Oncology Photons Physics Protein interaction Protein Interaction Domains and Motifs Protein-protein interactions Proteins Proteins - chemistry Receptors, CXCR4 - chemistry Recipes Red Fluorescent Protein Scaling Screening Sensitivity and Specificity Small Molecule Libraries - chemistry Studies Time correlation functions |
title | A multi-functional imaging approach to high-content protein interaction screening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-functional%20imaging%20approach%20to%20high-content%20protein%20interaction%20screening&rft.jtitle=PloS%20one&rft.au=Matthews,%20Daniel%20R&rft.date=2012-04-10&rft.volume=7&rft.issue=4&rft.spage=e33231&rft.epage=e33231&rft.pages=e33231-e33231&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0033231&rft_dat=%3Cgale_plos_%3EA477133530%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324444251&rft_id=info:pmid/22506000&rft_galeid=A477133530&rft_doaj_id=oai_doaj_org_article_be7dae9c27184a5895f60efb3e0a0048&rfr_iscdi=true |