Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model

Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-03, Vol.7 (3), p.e33633
Hauptverfasser: Chakraborty, Goutam, Kumar, Santosh, Mishra, Rosalin, Patil, Tushar V, Kundu, Gopal C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e33633
container_title PloS one
container_volume 7
creator Chakraborty, Goutam
Kumar, Santosh
Mishra, Rosalin
Patil, Tushar V
Kundu, Gopal C
description Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation. In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents. Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.
doi_str_mv 10.1371/journal.pone.0033633
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324434272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477056705</galeid><doaj_id>oai_doaj_org_article_d5b699ce36e44fe490453de5a7a2ae76</doaj_id><sourcerecordid>A477056705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-fdf56ceb8db5cc304ea2ed4dfa67caaf319beccdf1dbd1dda1207dccaedb46813</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLwoIXMyZNmrY3wrCsOriw4Kq34TQ57WRom5qkfvx7s053mYKCJCHh5DlvkpM3SZ5TsqasoG_2dnIDdOvRDrgmhDHB2IPklFYsW4mMsIdH65Pkifd7QnJWCvE4Ockyzsssr06TjzfYw7izzgwp26R-GkeH3qNPw9Rbl7bO_gi7FAad9hjAx258GuHeKIyhDgbbQ9pbjd3T5FEDncdn83yWfHl3-fniw-rq-v32YnO1UqKiYdXoJhcK61LXuVKMcIQMNdcNiEIBNIxWNSqlG6prTbUGmpFCKwWoay5Kys6SlwfdsbNeznXwkrL4KsazIovE9kBoC3s5OtOD-yUtGPknYF0rwQWjOpQ6r0VVKWQCOW-QV4TnTGMOBWSAhYhab-fTprpHrXAIDrqF6HJnMDvZ2u-SMVJWZR4FXs0Czn6b0Id_XHmmWoi3MkNjo5jqjVdyw4uC5CKOSK3_QsWmMX5IdEJjYnyR8HqREJmAP0MLk_dye_Pp_9nrr0v2_IjdIXRh5203BWMHvwT5AVTOeu-wua8cJfLWyHfVkLdGlrORY9qL46rfJ905l_0G863wfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324434272</pqid></control><display><type>article</type><title>Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Chakraborty, Goutam ; Kumar, Santosh ; Mishra, Rosalin ; Patil, Tushar V ; Kundu, Gopal C</creator><contributor>Lebedeva, Irina V.</contributor><creatorcontrib>Chakraborty, Goutam ; Kumar, Santosh ; Mishra, Rosalin ; Patil, Tushar V ; Kundu, Gopal C ; Lebedeva, Irina V.</creatorcontrib><description>Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation. In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents. Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0033633</identifier><identifier>PMID: 22448259</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ailanthus excelsa ; Analysis ; Angiogenesis ; Animal models ; Animals ; Anticancer properties ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents, Alkylating - pharmacology ; Apoptosis - drug effects ; Axon sprouting ; Biology ; Blotting, Western ; Breast cancer ; Cancer ; Cancer metastasis ; Cancer prevention ; Cancer treatment ; Case-Control Studies ; Cell Adhesion - drug effects ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; Curcumin ; Curcumin - pharmacology ; Dacarbazine ; Dacarbazine - pharmacology ; Genes ; Growth ; Health aspects ; House mouse ; Human Umbilical Vein Endothelial Cells - drug effects ; Humans ; Immunoenzyme Techniques ; In vivo methods and tests ; Inhibition ; Invasiveness ; Liver Neoplasms - metabolism ; Liver Neoplasms - prevention &amp; control ; Liver Neoplasms - secondary ; Lung Neoplasms - metabolism ; Lung Neoplasms - prevention &amp; control ; Lung Neoplasms - secondary ; Male ; Medicine ; Melanoma ; Melanoma, Experimental - metabolism ; Melanoma, Experimental - pathology ; Melanoma, Experimental - prevention &amp; control ; Metastases ; Metastasis ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic - prevention &amp; control ; Phosphatase ; Phosphorylation ; Phosphorylation - drug effects ; Prostate cancer ; Proteins ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; Semaphorin-3A - genetics ; Semaphorin-3A - metabolism ; Tumor suppressor genes ; Tumorigenesis ; Tumors ; Vascular endothelial growth factor ; Wound Healing - drug effects</subject><ispartof>PloS one, 2012-03, Vol.7 (3), p.e33633</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Chakraborty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Chakraborty et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-fdf56ceb8db5cc304ea2ed4dfa67caaf319beccdf1dbd1dda1207dccaedb46813</citedby><cites>FETCH-LOGICAL-c691t-fdf56ceb8db5cc304ea2ed4dfa67caaf319beccdf1dbd1dda1207dccaedb46813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308985/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308985/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22448259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lebedeva, Irina V.</contributor><creatorcontrib>Chakraborty, Goutam</creatorcontrib><creatorcontrib>Kumar, Santosh</creatorcontrib><creatorcontrib>Mishra, Rosalin</creatorcontrib><creatorcontrib>Patil, Tushar V</creatorcontrib><creatorcontrib>Kundu, Gopal C</creatorcontrib><title>Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation. In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents. Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.</description><subject>Ailanthus excelsa</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents, Alkylating - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Axon sprouting</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Cancer prevention</subject><subject>Cancer treatment</subject><subject>Case-Control Studies</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Curcumin</subject><subject>Curcumin - pharmacology</subject><subject>Dacarbazine</subject><subject>Dacarbazine - pharmacology</subject><subject>Genes</subject><subject>Growth</subject><subject>Health aspects</subject><subject>House mouse</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Humans</subject><subject>Immunoenzyme Techniques</subject><subject>In vivo methods and tests</subject><subject>Inhibition</subject><subject>Invasiveness</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - prevention &amp; control</subject><subject>Liver Neoplasms - secondary</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - prevention &amp; control</subject><subject>Lung Neoplasms - secondary</subject><subject>Male</subject><subject>Medicine</subject><subject>Melanoma</subject><subject>Melanoma, Experimental - metabolism</subject><subject>Melanoma, Experimental - pathology</subject><subject>Melanoma, Experimental - prevention &amp; control</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neovascularization, Pathologic - prevention &amp; control</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>Semaphorin-3A - genetics</subject><subject>Semaphorin-3A - metabolism</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Wound Healing - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLwoIXMyZNmrY3wrCsOriw4Kq34TQ57WRom5qkfvx7s053mYKCJCHh5DlvkpM3SZ5TsqasoG_2dnIDdOvRDrgmhDHB2IPklFYsW4mMsIdH65Pkifd7QnJWCvE4Ockyzsssr06TjzfYw7izzgwp26R-GkeH3qNPw9Rbl7bO_gi7FAad9hjAx258GuHeKIyhDgbbQ9pbjd3T5FEDncdn83yWfHl3-fniw-rq-v32YnO1UqKiYdXoJhcK61LXuVKMcIQMNdcNiEIBNIxWNSqlG6prTbUGmpFCKwWoay5Kys6SlwfdsbNeznXwkrL4KsazIovE9kBoC3s5OtOD-yUtGPknYF0rwQWjOpQ6r0VVKWQCOW-QV4TnTGMOBWSAhYhab-fTprpHrXAIDrqF6HJnMDvZ2u-SMVJWZR4FXs0Czn6b0Id_XHmmWoi3MkNjo5jqjVdyw4uC5CKOSK3_QsWmMX5IdEJjYnyR8HqREJmAP0MLk_dye_Pp_9nrr0v2_IjdIXRh5203BWMHvwT5AVTOeu-wua8cJfLWyHfVkLdGlrORY9qL46rfJ905l_0G863wfQ</recordid><startdate>20120320</startdate><enddate>20120320</enddate><creator>Chakraborty, Goutam</creator><creator>Kumar, Santosh</creator><creator>Mishra, Rosalin</creator><creator>Patil, Tushar V</creator><creator>Kundu, Gopal C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120320</creationdate><title>Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model</title><author>Chakraborty, Goutam ; Kumar, Santosh ; Mishra, Rosalin ; Patil, Tushar V ; Kundu, Gopal C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-fdf56ceb8db5cc304ea2ed4dfa67caaf319beccdf1dbd1dda1207dccaedb46813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ailanthus excelsa</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents, Alkylating - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Axon sprouting</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Cancer prevention</topic><topic>Cancer treatment</topic><topic>Case-Control Studies</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Curcumin</topic><topic>Curcumin - pharmacology</topic><topic>Dacarbazine</topic><topic>Dacarbazine - pharmacology</topic><topic>Genes</topic><topic>Growth</topic><topic>Health aspects</topic><topic>House mouse</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Humans</topic><topic>Immunoenzyme Techniques</topic><topic>In vivo methods and tests</topic><topic>Inhibition</topic><topic>Invasiveness</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - prevention &amp; control</topic><topic>Liver Neoplasms - secondary</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - prevention &amp; control</topic><topic>Lung Neoplasms - secondary</topic><topic>Male</topic><topic>Medicine</topic><topic>Melanoma</topic><topic>Melanoma, Experimental - metabolism</topic><topic>Melanoma, Experimental - pathology</topic><topic>Melanoma, Experimental - prevention &amp; control</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neovascularization, Pathologic - prevention &amp; control</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>Semaphorin-3A - genetics</topic><topic>Semaphorin-3A - metabolism</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Goutam</creatorcontrib><creatorcontrib>Kumar, Santosh</creatorcontrib><creatorcontrib>Mishra, Rosalin</creatorcontrib><creatorcontrib>Patil, Tushar V</creatorcontrib><creatorcontrib>Kundu, Gopal C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Goutam</au><au>Kumar, Santosh</au><au>Mishra, Rosalin</au><au>Patil, Tushar V</au><au>Kundu, Gopal C</au><au>Lebedeva, Irina V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-03-20</date><risdate>2012</risdate><volume>7</volume><issue>3</issue><spage>e33633</spage><pages>e33633-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation. In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents. Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22448259</pmid><doi>10.1371/journal.pone.0033633</doi><tpages>e33633</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-03, Vol.7 (3), p.e33633
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1324434272
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Ailanthus excelsa
Analysis
Angiogenesis
Animal models
Animals
Anticancer properties
Antineoplastic Agents - pharmacology
Antineoplastic Agents, Alkylating - pharmacology
Apoptosis - drug effects
Axon sprouting
Biology
Blotting, Western
Breast cancer
Cancer
Cancer metastasis
Cancer prevention
Cancer treatment
Case-Control Studies
Cell Adhesion - drug effects
Cell Movement - drug effects
Cell Proliferation - drug effects
Cells, Cultured
Curcumin
Curcumin - pharmacology
Dacarbazine
Dacarbazine - pharmacology
Genes
Growth
Health aspects
House mouse
Human Umbilical Vein Endothelial Cells - drug effects
Humans
Immunoenzyme Techniques
In vivo methods and tests
Inhibition
Invasiveness
Liver Neoplasms - metabolism
Liver Neoplasms - prevention & control
Liver Neoplasms - secondary
Lung Neoplasms - metabolism
Lung Neoplasms - prevention & control
Lung Neoplasms - secondary
Male
Medicine
Melanoma
Melanoma, Experimental - metabolism
Melanoma, Experimental - pathology
Melanoma, Experimental - prevention & control
Metastases
Metastasis
Mice
Mice, Inbred C57BL
Neovascularization, Pathologic - prevention & control
Phosphatase
Phosphorylation
Phosphorylation - drug effects
Prostate cancer
Proteins
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Semaphorin-3A - genetics
Semaphorin-3A - metabolism
Tumor suppressor genes
Tumorigenesis
Tumors
Vascular endothelial growth factor
Wound Healing - drug effects
title Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semaphorin%203A%20suppresses%20tumor%20growth%20and%20metastasis%20in%20mice%20melanoma%20model&rft.jtitle=PloS%20one&rft.au=Chakraborty,%20Goutam&rft.date=2012-03-20&rft.volume=7&rft.issue=3&rft.spage=e33633&rft.pages=e33633-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0033633&rft_dat=%3Cgale_plos_%3EA477056705%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324434272&rft_id=info:pmid/22448259&rft_galeid=A477056705&rft_doaj_id=oai_doaj_org_article_d5b699ce36e44fe490453de5a7a2ae76&rfr_iscdi=true