Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K
The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellul...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-02, Vol.7 (2), p.e32349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e32349 |
container_title | PloS one |
container_volume | 7 |
creator | Zhou, Mingyan Xu, Aimin Tam, Paul K H Lam, Karen S L Huang, Bosheng Liang, Yan Lee, In-Kyu Wu, Donghai Wang, Yu |
description | The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression.
Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression.
Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver. |
doi_str_mv | 10.1371/journal.pone.0032349 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323571469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477082243</galeid><doaj_id>oai_doaj_org_article_8e74062afcbd44d690450eb5f0641fbc</doaj_id><sourcerecordid>A477082243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-a65328c16d900b71905f61b633756e9d87dfe1e654cb30bfb93370227cc2b3ae3</originalsourceid><addsrcrecordid>eNqNkluL1DAYhoso7rr6D0QLguDFjDk1bb0QlsHD4OIuq-OVENIcphnaZEzSYfffm3G6yxQUJBcJX57vTfLmzbLnEMwhLuHbjRu85d1866yaA4ARJvWD7BTWGM0oAvjh0fokexLCBoACV5Q-zk4QwkVNK3Ka_VxtvVoPHY_G2dzpfLW4Qnlzm3Np9soiGvsuj63Kjd25bqd6ZeOe6010onVWesO7PAxb5d2NkSrnVuatvf56lX95mj3SvAvq2TifZauPH74vPs8uLj8tF-cXM0FrGGecFhhVAlJZA9CUsAaFprChGJcFVbWsSqkVVLQgosGg0U2ddgBCpRCowVzhs-zlQXfbucBGYwKDyZOihITWiVgeCOn4hm296bm_ZY4b9qfg_JpxH43oFKtUSQBFXItGEiJpDUgBVFNoQAnUjUha78fThqZXUiRDPO8motMda1q2djuWHgkhgUng1Sjg3a9BhfiPK4_UmqdbGatdEhO9CYKdk7IEFUIEJ2r-FyoNqXoj0gdqk-qThjeThsREdRPXfAiBLb9d_z97-WPKvj5iW8W72AbXDftchSlIDqDwLgSv9L1zELB9su_cYPv8sTHZqe3Fsev3TXdRxr8Bj3Pyxw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323571469</pqid></control><display><type>article</type><title>Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhou, Mingyan ; Xu, Aimin ; Tam, Paul K H ; Lam, Karen S L ; Huang, Bosheng ; Liang, Yan ; Lee, In-Kyu ; Wu, Donghai ; Wang, Yu</creator><contributor>Chung, Sookja</contributor><creatorcontrib>Zhou, Mingyan ; Xu, Aimin ; Tam, Paul K H ; Lam, Karen S L ; Huang, Bosheng ; Liang, Yan ; Lee, In-Kyu ; Wu, Donghai ; Wang, Yu ; Chung, Sookja</creatorcontrib><description>The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression.
Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression.
Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0032349</identifier><identifier>PMID: 22359684</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abundance ; Actinomycin ; Adiponectin ; Adiponectin - physiology ; Analysis ; Animal tissues ; Animals ; Apoptosis ; Biology ; Cell growth ; Cycloheximide ; Cytometry ; Electron transport chain ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelium ; Fatty liver ; Flow cytometry ; Growth factors ; Heterogeneous-Nuclear Ribonucleoprotein K - metabolism ; Inhibitors ; Ion Channels - biosynthesis ; Kinases ; Liver ; Liver - cytology ; Liver diseases ; Medicine ; Membrane proteins ; Mice ; Mice, Knockout ; Microscopy ; Mitochondria ; Mitochondria, Liver - metabolism ; Mitochondrial Proteins - biosynthesis ; Mitochondrial uncoupling protein 2 ; Molecular modelling ; Mouse devices ; Nucleic acids ; Obesity ; Pharmacology ; Pharmacy ; Phosphorylation ; Protein binding ; Protein biosynthesis ; Protein synthesis ; Protein transport ; Proteins ; Ribonucleoprotein K ; RNA ; RNA, Messenger - analysis ; Rodents ; Rotenone ; Superoxide ; Superoxides ; Superoxides - metabolism ; Transcription ; Translocation ; Type 2 diabetes ; Uncoupling Protein 2 ; Up-Regulation ; Western blotting</subject><ispartof>PloS one, 2012-02, Vol.7 (2), p.e32349</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Zhou et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-a65328c16d900b71905f61b633756e9d87dfe1e654cb30bfb93370227cc2b3ae3</citedby><cites>FETCH-LOGICAL-c691t-a65328c16d900b71905f61b633756e9d87dfe1e654cb30bfb93370227cc2b3ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281141/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281141/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22359684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chung, Sookja</contributor><creatorcontrib>Zhou, Mingyan</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Tam, Paul K H</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><creatorcontrib>Huang, Bosheng</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Lee, In-Kyu</creatorcontrib><creatorcontrib>Wu, Donghai</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression.
Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression.
Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver.</description><subject>Abundance</subject><subject>Actinomycin</subject><subject>Adiponectin</subject><subject>Adiponectin - physiology</subject><subject>Analysis</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Cell growth</subject><subject>Cycloheximide</subject><subject>Cytometry</subject><subject>Electron transport chain</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Fatty liver</subject><subject>Flow cytometry</subject><subject>Growth factors</subject><subject>Heterogeneous-Nuclear Ribonucleoprotein K - metabolism</subject><subject>Inhibitors</subject><subject>Ion Channels - biosynthesis</subject><subject>Kinases</subject><subject>Liver</subject><subject>Liver - cytology</subject><subject>Liver diseases</subject><subject>Medicine</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial uncoupling protein 2</subject><subject>Molecular modelling</subject><subject>Mouse devices</subject><subject>Nucleic acids</subject><subject>Obesity</subject><subject>Pharmacology</subject><subject>Pharmacy</subject><subject>Phosphorylation</subject><subject>Protein binding</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Ribonucleoprotein K</subject><subject>RNA</subject><subject>RNA, Messenger - analysis</subject><subject>Rodents</subject><subject>Rotenone</subject><subject>Superoxide</subject><subject>Superoxides</subject><subject>Superoxides - metabolism</subject><subject>Transcription</subject><subject>Translocation</subject><subject>Type 2 diabetes</subject><subject>Uncoupling Protein 2</subject><subject>Up-Regulation</subject><subject>Western blotting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAYhoso7rr6D0QLguDFjDk1bb0QlsHD4OIuq-OVENIcphnaZEzSYfffm3G6yxQUJBcJX57vTfLmzbLnEMwhLuHbjRu85d1866yaA4ARJvWD7BTWGM0oAvjh0fokexLCBoACV5Q-zk4QwkVNK3Ka_VxtvVoPHY_G2dzpfLW4Qnlzm3Np9soiGvsuj63Kjd25bqd6ZeOe6010onVWesO7PAxb5d2NkSrnVuatvf56lX95mj3SvAvq2TifZauPH74vPs8uLj8tF-cXM0FrGGecFhhVAlJZA9CUsAaFprChGJcFVbWsSqkVVLQgosGg0U2ddgBCpRCowVzhs-zlQXfbucBGYwKDyZOihITWiVgeCOn4hm296bm_ZY4b9qfg_JpxH43oFKtUSQBFXItGEiJpDUgBVFNoQAnUjUha78fThqZXUiRDPO8motMda1q2djuWHgkhgUng1Sjg3a9BhfiPK4_UmqdbGatdEhO9CYKdk7IEFUIEJ2r-FyoNqXoj0gdqk-qThjeThsREdRPXfAiBLb9d_z97-WPKvj5iW8W72AbXDftchSlIDqDwLgSv9L1zELB9su_cYPv8sTHZqe3Fsev3TXdRxr8Bj3Pyxw</recordid><startdate>20120216</startdate><enddate>20120216</enddate><creator>Zhou, Mingyan</creator><creator>Xu, Aimin</creator><creator>Tam, Paul K H</creator><creator>Lam, Karen S L</creator><creator>Huang, Bosheng</creator><creator>Liang, Yan</creator><creator>Lee, In-Kyu</creator><creator>Wu, Donghai</creator><creator>Wang, Yu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120216</creationdate><title>Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K</title><author>Zhou, Mingyan ; Xu, Aimin ; Tam, Paul K H ; Lam, Karen S L ; Huang, Bosheng ; Liang, Yan ; Lee, In-Kyu ; Wu, Donghai ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-a65328c16d900b71905f61b633756e9d87dfe1e654cb30bfb93370227cc2b3ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abundance</topic><topic>Actinomycin</topic><topic>Adiponectin</topic><topic>Adiponectin - physiology</topic><topic>Analysis</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Cell growth</topic><topic>Cycloheximide</topic><topic>Cytometry</topic><topic>Electron transport chain</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Fatty liver</topic><topic>Flow cytometry</topic><topic>Growth factors</topic><topic>Heterogeneous-Nuclear Ribonucleoprotein K - metabolism</topic><topic>Inhibitors</topic><topic>Ion Channels - biosynthesis</topic><topic>Kinases</topic><topic>Liver</topic><topic>Liver - cytology</topic><topic>Liver diseases</topic><topic>Medicine</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial uncoupling protein 2</topic><topic>Molecular modelling</topic><topic>Mouse devices</topic><topic>Nucleic acids</topic><topic>Obesity</topic><topic>Pharmacology</topic><topic>Pharmacy</topic><topic>Phosphorylation</topic><topic>Protein binding</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Ribonucleoprotein K</topic><topic>RNA</topic><topic>RNA, Messenger - analysis</topic><topic>Rodents</topic><topic>Rotenone</topic><topic>Superoxide</topic><topic>Superoxides</topic><topic>Superoxides - metabolism</topic><topic>Transcription</topic><topic>Translocation</topic><topic>Type 2 diabetes</topic><topic>Uncoupling Protein 2</topic><topic>Up-Regulation</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingyan</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Tam, Paul K H</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><creatorcontrib>Huang, Bosheng</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Lee, In-Kyu</creatorcontrib><creatorcontrib>Wu, Donghai</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Mingyan</au><au>Xu, Aimin</au><au>Tam, Paul K H</au><au>Lam, Karen S L</au><au>Huang, Bosheng</au><au>Liang, Yan</au><au>Lee, In-Kyu</au><au>Wu, Donghai</au><au>Wang, Yu</au><au>Chung, Sookja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-02-16</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>e32349</spage><pages>e32349-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression.
Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression.
Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22359684</pmid><doi>10.1371/journal.pone.0032349</doi><tpages>e32349</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-02, Vol.7 (2), p.e32349 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1323571469 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abundance Actinomycin Adiponectin Adiponectin - physiology Analysis Animal tissues Animals Apoptosis Biology Cell growth Cycloheximide Cytometry Electron transport chain Endothelial cells Endothelial Cells - metabolism Endothelium Fatty liver Flow cytometry Growth factors Heterogeneous-Nuclear Ribonucleoprotein K - metabolism Inhibitors Ion Channels - biosynthesis Kinases Liver Liver - cytology Liver diseases Medicine Membrane proteins Mice Mice, Knockout Microscopy Mitochondria Mitochondria, Liver - metabolism Mitochondrial Proteins - biosynthesis Mitochondrial uncoupling protein 2 Molecular modelling Mouse devices Nucleic acids Obesity Pharmacology Pharmacy Phosphorylation Protein binding Protein biosynthesis Protein synthesis Protein transport Proteins Ribonucleoprotein K RNA RNA, Messenger - analysis Rodents Rotenone Superoxide Superoxides Superoxides - metabolism Transcription Translocation Type 2 diabetes Uncoupling Protein 2 Up-Regulation Western blotting |
title | Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upregulation%20of%20UCP2%20by%20adiponectin:%20the%20involvement%20of%20mitochondrial%20superoxide%20and%20hnRNP%20K&rft.jtitle=PloS%20one&rft.au=Zhou,%20Mingyan&rft.date=2012-02-16&rft.volume=7&rft.issue=2&rft.spage=e32349&rft.pages=e32349-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0032349&rft_dat=%3Cgale_plos_%3EA477082243%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323571469&rft_id=info:pmid/22359684&rft_galeid=A477082243&rft_doaj_id=oai_doaj_org_article_8e74062afcbd44d690450eb5f0641fbc&rfr_iscdi=true |