Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes
Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron av...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-02, Vol.7 (2), p.e30931-e30931 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e30931 |
---|---|
container_issue | 2 |
container_start_page | e30931 |
container_title | PloS one |
container_volume | 7 |
creator | Toulza, Eve Tagliabue, Alessandro Blain, Stéphane Piganeau, Gwenael |
description | Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations. |
doi_str_mv | 10.1371/journal.pone.0030931 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323567956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477075570</galeid><doaj_id>oai_doaj_org_article_3bc67332c6c544819f0a474569ca14e0</doaj_id><sourcerecordid>A477075570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-449172daca39a9c6e5a6273668f5924b304500acff0dad0a1831460585bcdd573</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEArqYwW_HG6RRBW2lkboA1taN42Q8ZOJgJ5Xm7_EwadVWlRe2rs8593WK4j3BS8IU-boNU-yhWw6hd0uMGdaMvChOiWZ0ISlmLx-8T4o3KW0xFqyU8nVxQimTTFB8WrSrrLFPPqHQoHHjUNuFCjoUrIMeJdgNne9b9OXy5uc5GmLYOjuiJkQ0RtfXCfke-Rh6NA0j_HGo2qM0xQasmxV23sZQufS2eNVAl9y7-T4rfv_4_uviarG-uby-WK0XVmo6LjjXRNEaLDAN2konQFLFpCwboSmvGOYCY7BNg2uoMZCSES6xKEVl61oodlZ8POoOXUhmnlEyhFEmpNJCZsT1EVEH2Joh-h3EvQngzf9AiK2BOHrbOcMqKxVj1EorOC-JbjBwxYXUFgh3OGt9m7NN1c7V1vVjhO6R6OOf3m9MG24NoyUpS50Fzo8Cmye0q9XaHGKYUaxoyW9Jxn6ek8Xwd3JpNDufrOs66F2YktG5RcXzgDLy0xPk84OYUS3kXn3fhFyiPWiaFVcKKyHUocXlM6h8apd3m73X-Bx_ROBHQl58StE1930RbA7OvSvGHJxrZudm2oeHo7wn3VmV_QNLruiE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323567956</pqid></control><display><type>article</type><title>Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Toulza, Eve ; Tagliabue, Alessandro ; Blain, Stéphane ; Piganeau, Gwenael</creator><contributor>Rodriguez-Valera, Francisco</contributor><creatorcontrib>Toulza, Eve ; Tagliabue, Alessandro ; Blain, Stéphane ; Piganeau, Gwenael ; Rodriguez-Valera, Francisco</creatorcontrib><description>Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0030931</identifier><identifier>PMID: 22363520</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acinetobacter baumannii ; Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; Analysis ; Bacteria ; Bacteria - classification ; Bacteria - drug effects ; Bacteria - genetics ; Biogeochemistry ; Biological evolution ; Biology ; Biomarkers - metabolism ; Cell size ; Chemical analysis ; Coastal environments ; Communities ; Continental interfaces, environment ; Cyanobacteria ; Databases as Topic ; Deoxyribonucleic acid ; DNA ; Ecology ; Ecosystem ; Gene families ; Gene sequencing ; Genes ; Genes, Bacterial - genetics ; Genomes ; Geography ; Homeostasis ; Internationality ; Iron ; Iron - metabolism ; Iron - pharmacology ; Iron industry ; Marine environment ; Marine microorganisms ; Metabolic Networks and Pathways - drug effects ; Metabolic pathways ; Metabolism ; Microbial activity ; Microorganisms ; Ocean, Atmosphere ; Oceanography - methods ; Oceans ; Oceans and Seas ; Oxidative stress ; Pathways ; Phylogenetics ; Phylogeny ; Physiological aspects ; Prochlorococcus ; Proteins ; Proteomics ; Sampling ; Sciences of the Universe ; Seawater ; Seawater - microbiology ; Stress response ; Studies ; Surface Properties - drug effects ; Synechococcus ; Water analysis</subject><ispartof>PloS one, 2012-02, Vol.7 (2), p.e30931-e30931</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Toulza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Toulza et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-449172daca39a9c6e5a6273668f5924b304500acff0dad0a1831460585bcdd573</citedby><cites>FETCH-LOGICAL-c692t-449172daca39a9c6e5a6273668f5924b304500acff0dad0a1831460585bcdd573</cites><orcidid>0000-0002-3572-3634 ; 0000-0002-5234-2446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281889/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281889/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22363520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03207284$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Rodriguez-Valera, Francisco</contributor><creatorcontrib>Toulza, Eve</creatorcontrib><creatorcontrib>Tagliabue, Alessandro</creatorcontrib><creatorcontrib>Blain, Stéphane</creatorcontrib><creatorcontrib>Piganeau, Gwenael</creatorcontrib><title>Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.</description><subject>Acinetobacter baumannii</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Biogeochemistry</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biomarkers - metabolism</subject><subject>Cell size</subject><subject>Chemical analysis</subject><subject>Coastal environments</subject><subject>Communities</subject><subject>Continental interfaces, environment</subject><subject>Cyanobacteria</subject><subject>Databases as Topic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Gene families</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genes, Bacterial - genetics</subject><subject>Genomes</subject><subject>Geography</subject><subject>Homeostasis</subject><subject>Internationality</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron - pharmacology</subject><subject>Iron industry</subject><subject>Marine environment</subject><subject>Marine microorganisms</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Ocean, Atmosphere</subject><subject>Oceanography - methods</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Oxidative stress</subject><subject>Pathways</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Prochlorococcus</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Sampling</subject><subject>Sciences of the Universe</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Stress response</subject><subject>Studies</subject><subject>Surface Properties - drug effects</subject><subject>Synechococcus</subject><subject>Water analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEArqYwW_HG6RRBW2lkboA1taN42Q8ZOJgJ5Xm7_EwadVWlRe2rs8593WK4j3BS8IU-boNU-yhWw6hd0uMGdaMvChOiWZ0ISlmLx-8T4o3KW0xFqyU8nVxQimTTFB8WrSrrLFPPqHQoHHjUNuFCjoUrIMeJdgNne9b9OXy5uc5GmLYOjuiJkQ0RtfXCfke-Rh6NA0j_HGo2qM0xQasmxV23sZQufS2eNVAl9y7-T4rfv_4_uviarG-uby-WK0XVmo6LjjXRNEaLDAN2konQFLFpCwboSmvGOYCY7BNg2uoMZCSES6xKEVl61oodlZ8POoOXUhmnlEyhFEmpNJCZsT1EVEH2Joh-h3EvQngzf9AiK2BOHrbOcMqKxVj1EorOC-JbjBwxYXUFgh3OGt9m7NN1c7V1vVjhO6R6OOf3m9MG24NoyUpS50Fzo8Cmye0q9XaHGKYUaxoyW9Jxn6ek8Xwd3JpNDufrOs66F2YktG5RcXzgDLy0xPk84OYUS3kXn3fhFyiPWiaFVcKKyHUocXlM6h8apd3m73X-Bx_ROBHQl58StE1930RbA7OvSvGHJxrZudm2oeHo7wn3VmV_QNLruiE</recordid><startdate>20120217</startdate><enddate>20120217</enddate><creator>Toulza, Eve</creator><creator>Tagliabue, Alessandro</creator><creator>Blain, Stéphane</creator><creator>Piganeau, Gwenael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3572-3634</orcidid><orcidid>https://orcid.org/0000-0002-5234-2446</orcidid></search><sort><creationdate>20120217</creationdate><title>Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes</title><author>Toulza, Eve ; Tagliabue, Alessandro ; Blain, Stéphane ; Piganeau, Gwenael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-449172daca39a9c6e5a6273668f5924b304500acff0dad0a1831460585bcdd573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acinetobacter baumannii</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Biogeochemistry</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biomarkers - metabolism</topic><topic>Cell size</topic><topic>Chemical analysis</topic><topic>Coastal environments</topic><topic>Communities</topic><topic>Continental interfaces, environment</topic><topic>Cyanobacteria</topic><topic>Databases as Topic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Gene families</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genes, Bacterial - genetics</topic><topic>Genomes</topic><topic>Geography</topic><topic>Homeostasis</topic><topic>Internationality</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron - pharmacology</topic><topic>Iron industry</topic><topic>Marine environment</topic><topic>Marine microorganisms</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Ocean, Atmosphere</topic><topic>Oceanography - methods</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Oxidative stress</topic><topic>Pathways</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Prochlorococcus</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Sampling</topic><topic>Sciences of the Universe</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Stress response</topic><topic>Studies</topic><topic>Surface Properties - drug effects</topic><topic>Synechococcus</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toulza, Eve</creatorcontrib><creatorcontrib>Tagliabue, Alessandro</creatorcontrib><creatorcontrib>Blain, Stéphane</creatorcontrib><creatorcontrib>Piganeau, Gwenael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toulza, Eve</au><au>Tagliabue, Alessandro</au><au>Blain, Stéphane</au><au>Piganeau, Gwenael</au><au>Rodriguez-Valera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-02-17</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>e30931</spage><epage>e30931</epage><pages>e30931-e30931</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22363520</pmid><doi>10.1371/journal.pone.0030931</doi><orcidid>https://orcid.org/0000-0002-3572-3634</orcidid><orcidid>https://orcid.org/0000-0002-5234-2446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-02, Vol.7 (2), p.e30931-e30931 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1323567956 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acinetobacter baumannii Adaptation, Physiological - drug effects Adaptation, Physiological - genetics Analysis Bacteria Bacteria - classification Bacteria - drug effects Bacteria - genetics Biogeochemistry Biological evolution Biology Biomarkers - metabolism Cell size Chemical analysis Coastal environments Communities Continental interfaces, environment Cyanobacteria Databases as Topic Deoxyribonucleic acid DNA Ecology Ecosystem Gene families Gene sequencing Genes Genes, Bacterial - genetics Genomes Geography Homeostasis Internationality Iron Iron - metabolism Iron - pharmacology Iron industry Marine environment Marine microorganisms Metabolic Networks and Pathways - drug effects Metabolic pathways Metabolism Microbial activity Microorganisms Ocean, Atmosphere Oceanography - methods Oceans Oceans and Seas Oxidative stress Pathways Phylogenetics Phylogeny Physiological aspects Prochlorococcus Proteins Proteomics Sampling Sciences of the Universe Seawater Seawater - microbiology Stress response Studies Surface Properties - drug effects Synechococcus Water analysis |
title | Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20global%20ocean%20sampling%20(GOS)%20project%20for%20trends%20in%20iron%20uptake%20by%20surface%20ocean%20microbes&rft.jtitle=PloS%20one&rft.au=Toulza,%20Eve&rft.date=2012-02-17&rft.volume=7&rft.issue=2&rft.spage=e30931&rft.epage=e30931&rft.pages=e30931-e30931&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0030931&rft_dat=%3Cgale_plos_%3EA477075570%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323567956&rft_id=info:pmid/22363520&rft_galeid=A477075570&rft_doaj_id=oai_doaj_org_article_3bc67332c6c544819f0a474569ca14e0&rfr_iscdi=true |