Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm

Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-02, Vol.7 (2), p.e31150
Hauptverfasser: Jollivet, Didier, Mary, Jean, Gagnière, Nicolas, Tanguy, Arnaud, Fontanillas, Eric, Boutet, Isabelle, Hourdez, Stéphane, Segurens, Béatrice, Weissenbach, Jean, Poch, Olivier, Lecompte, Odile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e31150
container_title PloS one
container_volume 7
creator Jollivet, Didier
Mary, Jean
Gagnière, Nicolas
Tanguy, Arnaud
Fontanillas, Eric
Boutet, Isabelle
Hourdez, Stéphane
Segurens, Béatrice
Weissenbach, Jean
Poch, Olivier
Lecompte, Odile
description Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.
doi_str_mv 10.1371/journal.pone.0031150
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323559255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477161949</galeid><doaj_id>oai_doaj_org_article_8cd62b9fe56842a784e43b7f5ee686c1</doaj_id><sourcerecordid>A477161949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3g_9D0QLgnAPu-ZHk7YvwnKot7Bwh78efAlpOt1maZs1Sde7_97U9o6tKEgekk4_35nMZCaKXmC0xDTFb3emt51slnvTwRIhijFDj6JTnFOy4ATRx0fnk-jMuR1CjGacP41OCKFJhhJ-Gn2_scaDaSGWpdx76bXpYm_iWm_r2EO7Byt9b8HFOthriEF5E3bbahXXd6UdP2QTH6Dz8Y0JCq3jn8a2z6InlWwcPJ_28-jrh_dfLq8Wm-uP68vVZqFSwvxCAauAlBlDlHBSYK4wZ4TipFI5l5kqOM0IyVFFcIkwQFnhnNNcFgVimBCg59Gr0e--MU5MZXECU0IZywljgViPRGnkTuytbqW9E0Zq8dtg7FZI67VqQGSqDJfIK2A8S4hMswQSWqQVA-BZuFrw9W6K1hctlCpkbWUzczr_0-labM1BUJKmDA0OLkYH9R-yq9VGDDaECUM5wYeBfT0Fs-ZHD87_I72J2sqQge4qEwKrVjslVkmaYo7zJA_U8i9UWCWEtwxNVOlgnwkuZoLAeLj1W9k7J9afP_0_e_1tzr45YmuQja-dafqh9dwcTEZQWeOcheqhXBiJYQbuqyGGGRDTDATZy-MXehDdNz39BZUpAQY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323559255</pqid></control><display><type>article</type><title>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jollivet, Didier ; Mary, Jean ; Gagnière, Nicolas ; Tanguy, Arnaud ; Fontanillas, Eric ; Boutet, Isabelle ; Hourdez, Stéphane ; Segurens, Béatrice ; Weissenbach, Jean ; Poch, Olivier ; Lecompte, Odile</creator><creatorcontrib>Jollivet, Didier ; Mary, Jean ; Gagnière, Nicolas ; Tanguy, Arnaud ; Fontanillas, Eric ; Boutet, Isabelle ; Hourdez, Stéphane ; Segurens, Béatrice ; Weissenbach, Jean ; Poch, Olivier ; Lecompte, Odile</creatorcontrib><description>Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0031150</identifier><identifier>PMID: 22348046</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acclimatization ; Acids ; Adaptation ; Adaptation, Physiological ; Alanine ; Aliphatic compounds ; Amino Acids ; Analysis ; Animals ; Biology ; Codon ; Codons ; Comparative analysis ; Deep sea ; Deep sea environments ; Depth indicators ; DNA sequencing ; Earth Sciences ; Environmental Sciences ; Enzymes ; Epidemiology ; Eukaryotes ; Evolution ; Fines &amp; penalties ; Gene expression ; Gene sequencing ; Genomes ; Genomics ; Glycine ; High temperature ; High temperatures ; Hot Temperature ; Hydrophobicity ; Hydrothermal vent ecosystems ; Hydrothermal Vents ; Life Sciences ; Phylogenetics ; Polychaeta ; Prokaryotes ; Prokaryotic Cells ; Proteins ; Proteome - physiology ; Proteomes ; Residues ; Ribosomal proteins ; Streptomyces ; Studies</subject><ispartof>PloS one, 2012-02, Vol.7 (2), p.e31150</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Jollivet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Jollivet et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</citedby><cites>FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</cites><orcidid>0000-0002-2438-8383 ; 0000-0001-6418-3887 ; 0000-0002-7134-3217 ; 0000-0001-8042-1857 ; 0000-0003-0619-9316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22348046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01250921$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jollivet, Didier</creatorcontrib><creatorcontrib>Mary, Jean</creatorcontrib><creatorcontrib>Gagnière, Nicolas</creatorcontrib><creatorcontrib>Tanguy, Arnaud</creatorcontrib><creatorcontrib>Fontanillas, Eric</creatorcontrib><creatorcontrib>Boutet, Isabelle</creatorcontrib><creatorcontrib>Hourdez, Stéphane</creatorcontrib><creatorcontrib>Segurens, Béatrice</creatorcontrib><creatorcontrib>Weissenbach, Jean</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Lecompte, Odile</creatorcontrib><title>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.</description><subject>Acclimatization</subject><subject>Acids</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Alanine</subject><subject>Aliphatic compounds</subject><subject>Amino Acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology</subject><subject>Codon</subject><subject>Codons</subject><subject>Comparative analysis</subject><subject>Deep sea</subject><subject>Deep sea environments</subject><subject>Depth indicators</subject><subject>DNA sequencing</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Enzymes</subject><subject>Epidemiology</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Fines &amp; penalties</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycine</subject><subject>High temperature</subject><subject>High temperatures</subject><subject>Hot Temperature</subject><subject>Hydrophobicity</subject><subject>Hydrothermal vent ecosystems</subject><subject>Hydrothermal Vents</subject><subject>Life Sciences</subject><subject>Phylogenetics</subject><subject>Polychaeta</subject><subject>Prokaryotes</subject><subject>Prokaryotic Cells</subject><subject>Proteins</subject><subject>Proteome - physiology</subject><subject>Proteomes</subject><subject>Residues</subject><subject>Ribosomal proteins</subject><subject>Streptomyces</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3g_9D0QLgnAPu-ZHk7YvwnKot7Bwh78efAlpOt1maZs1Sde7_97U9o6tKEgekk4_35nMZCaKXmC0xDTFb3emt51slnvTwRIhijFDj6JTnFOy4ATRx0fnk-jMuR1CjGacP41OCKFJhhJ-Gn2_scaDaSGWpdx76bXpYm_iWm_r2EO7Byt9b8HFOthriEF5E3bbahXXd6UdP2QTH6Dz8Y0JCq3jn8a2z6InlWwcPJ_28-jrh_dfLq8Wm-uP68vVZqFSwvxCAauAlBlDlHBSYK4wZ4TipFI5l5kqOM0IyVFFcIkwQFnhnNNcFgVimBCg59Gr0e--MU5MZXECU0IZywljgViPRGnkTuytbqW9E0Zq8dtg7FZI67VqQGSqDJfIK2A8S4hMswQSWqQVA-BZuFrw9W6K1hctlCpkbWUzczr_0-labM1BUJKmDA0OLkYH9R-yq9VGDDaECUM5wYeBfT0Fs-ZHD87_I72J2sqQge4qEwKrVjslVkmaYo7zJA_U8i9UWCWEtwxNVOlgnwkuZoLAeLj1W9k7J9afP_0_e_1tzr45YmuQja-dafqh9dwcTEZQWeOcheqhXBiJYQbuqyGGGRDTDATZy-MXehDdNz39BZUpAQY</recordid><startdate>20120210</startdate><enddate>20120210</enddate><creator>Jollivet, Didier</creator><creator>Mary, Jean</creator><creator>Gagnière, Nicolas</creator><creator>Tanguy, Arnaud</creator><creator>Fontanillas, Eric</creator><creator>Boutet, Isabelle</creator><creator>Hourdez, Stéphane</creator><creator>Segurens, Béatrice</creator><creator>Weissenbach, Jean</creator><creator>Poch, Olivier</creator><creator>Lecompte, Odile</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2438-8383</orcidid><orcidid>https://orcid.org/0000-0001-6418-3887</orcidid><orcidid>https://orcid.org/0000-0002-7134-3217</orcidid><orcidid>https://orcid.org/0000-0001-8042-1857</orcidid><orcidid>https://orcid.org/0000-0003-0619-9316</orcidid></search><sort><creationdate>20120210</creationdate><title>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</title><author>Jollivet, Didier ; Mary, Jean ; Gagnière, Nicolas ; Tanguy, Arnaud ; Fontanillas, Eric ; Boutet, Isabelle ; Hourdez, Stéphane ; Segurens, Béatrice ; Weissenbach, Jean ; Poch, Olivier ; Lecompte, Odile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acclimatization</topic><topic>Acids</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Alanine</topic><topic>Aliphatic compounds</topic><topic>Amino Acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology</topic><topic>Codon</topic><topic>Codons</topic><topic>Comparative analysis</topic><topic>Deep sea</topic><topic>Deep sea environments</topic><topic>Depth indicators</topic><topic>DNA sequencing</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Enzymes</topic><topic>Epidemiology</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Fines &amp; penalties</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycine</topic><topic>High temperature</topic><topic>High temperatures</topic><topic>Hot Temperature</topic><topic>Hydrophobicity</topic><topic>Hydrothermal vent ecosystems</topic><topic>Hydrothermal Vents</topic><topic>Life Sciences</topic><topic>Phylogenetics</topic><topic>Polychaeta</topic><topic>Prokaryotes</topic><topic>Prokaryotic Cells</topic><topic>Proteins</topic><topic>Proteome - physiology</topic><topic>Proteomes</topic><topic>Residues</topic><topic>Ribosomal proteins</topic><topic>Streptomyces</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jollivet, Didier</creatorcontrib><creatorcontrib>Mary, Jean</creatorcontrib><creatorcontrib>Gagnière, Nicolas</creatorcontrib><creatorcontrib>Tanguy, Arnaud</creatorcontrib><creatorcontrib>Fontanillas, Eric</creatorcontrib><creatorcontrib>Boutet, Isabelle</creatorcontrib><creatorcontrib>Hourdez, Stéphane</creatorcontrib><creatorcontrib>Segurens, Béatrice</creatorcontrib><creatorcontrib>Weissenbach, Jean</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Lecompte, Odile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jollivet, Didier</au><au>Mary, Jean</au><au>Gagnière, Nicolas</au><au>Tanguy, Arnaud</au><au>Fontanillas, Eric</au><au>Boutet, Isabelle</au><au>Hourdez, Stéphane</au><au>Segurens, Béatrice</au><au>Weissenbach, Jean</au><au>Poch, Olivier</au><au>Lecompte, Odile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-02-10</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>e31150</spage><pages>e31150-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22348046</pmid><doi>10.1371/journal.pone.0031150</doi><tpages>e31150</tpages><orcidid>https://orcid.org/0000-0002-2438-8383</orcidid><orcidid>https://orcid.org/0000-0001-6418-3887</orcidid><orcidid>https://orcid.org/0000-0002-7134-3217</orcidid><orcidid>https://orcid.org/0000-0001-8042-1857</orcidid><orcidid>https://orcid.org/0000-0003-0619-9316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-02, Vol.7 (2), p.e31150
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1323559255
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Acclimatization
Acids
Adaptation
Adaptation, Physiological
Alanine
Aliphatic compounds
Amino Acids
Analysis
Animals
Biology
Codon
Codons
Comparative analysis
Deep sea
Deep sea environments
Depth indicators
DNA sequencing
Earth Sciences
Environmental Sciences
Enzymes
Epidemiology
Eukaryotes
Evolution
Fines & penalties
Gene expression
Gene sequencing
Genomes
Genomics
Glycine
High temperature
High temperatures
Hot Temperature
Hydrophobicity
Hydrothermal vent ecosystems
Hydrothermal Vents
Life Sciences
Phylogenetics
Polychaeta
Prokaryotes
Prokaryotic Cells
Proteins
Proteome - physiology
Proteomes
Residues
Ribosomal proteins
Streptomyces
Studies
title Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteome%20adaptation%20to%20high%20temperatures%20in%20the%20ectothermic%20hydrothermal%20vent%20Pompeii%20worm&rft.jtitle=PloS%20one&rft.au=Jollivet,%20Didier&rft.date=2012-02-10&rft.volume=7&rft.issue=2&rft.spage=e31150&rft.pages=e31150-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0031150&rft_dat=%3Cgale_plos_%3EA477161949%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323559255&rft_id=info:pmid/22348046&rft_galeid=A477161949&rft_doaj_id=oai_doaj_org_article_8cd62b9fe56842a784e43b7f5ee686c1&rfr_iscdi=true