Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm
Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-02, Vol.7 (2), p.e31150 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e31150 |
container_title | PloS one |
container_volume | 7 |
creator | Jollivet, Didier Mary, Jean Gagnière, Nicolas Tanguy, Arnaud Fontanillas, Eric Boutet, Isabelle Hourdez, Stéphane Segurens, Béatrice Weissenbach, Jean Poch, Olivier Lecompte, Odile |
description | Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans. |
doi_str_mv | 10.1371/journal.pone.0031150 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323559255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477161949</galeid><doaj_id>oai_doaj_org_article_8cd62b9fe56842a784e43b7f5ee686c1</doaj_id><sourcerecordid>A477161949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3g_9D0QLgnAPu-ZHk7YvwnKot7Bwh78efAlpOt1maZs1Sde7_97U9o6tKEgekk4_35nMZCaKXmC0xDTFb3emt51slnvTwRIhijFDj6JTnFOy4ATRx0fnk-jMuR1CjGacP41OCKFJhhJ-Gn2_scaDaSGWpdx76bXpYm_iWm_r2EO7Byt9b8HFOthriEF5E3bbahXXd6UdP2QTH6Dz8Y0JCq3jn8a2z6InlWwcPJ_28-jrh_dfLq8Wm-uP68vVZqFSwvxCAauAlBlDlHBSYK4wZ4TipFI5l5kqOM0IyVFFcIkwQFnhnNNcFgVimBCg59Gr0e--MU5MZXECU0IZywljgViPRGnkTuytbqW9E0Zq8dtg7FZI67VqQGSqDJfIK2A8S4hMswQSWqQVA-BZuFrw9W6K1hctlCpkbWUzczr_0-labM1BUJKmDA0OLkYH9R-yq9VGDDaECUM5wYeBfT0Fs-ZHD87_I72J2sqQge4qEwKrVjslVkmaYo7zJA_U8i9UWCWEtwxNVOlgnwkuZoLAeLj1W9k7J9afP_0_e_1tzr45YmuQja-dafqh9dwcTEZQWeOcheqhXBiJYQbuqyGGGRDTDATZy-MXehDdNz39BZUpAQY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323559255</pqid></control><display><type>article</type><title>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jollivet, Didier ; Mary, Jean ; Gagnière, Nicolas ; Tanguy, Arnaud ; Fontanillas, Eric ; Boutet, Isabelle ; Hourdez, Stéphane ; Segurens, Béatrice ; Weissenbach, Jean ; Poch, Olivier ; Lecompte, Odile</creator><creatorcontrib>Jollivet, Didier ; Mary, Jean ; Gagnière, Nicolas ; Tanguy, Arnaud ; Fontanillas, Eric ; Boutet, Isabelle ; Hourdez, Stéphane ; Segurens, Béatrice ; Weissenbach, Jean ; Poch, Olivier ; Lecompte, Odile</creatorcontrib><description>Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0031150</identifier><identifier>PMID: 22348046</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acclimatization ; Acids ; Adaptation ; Adaptation, Physiological ; Alanine ; Aliphatic compounds ; Amino Acids ; Analysis ; Animals ; Biology ; Codon ; Codons ; Comparative analysis ; Deep sea ; Deep sea environments ; Depth indicators ; DNA sequencing ; Earth Sciences ; Environmental Sciences ; Enzymes ; Epidemiology ; Eukaryotes ; Evolution ; Fines & penalties ; Gene expression ; Gene sequencing ; Genomes ; Genomics ; Glycine ; High temperature ; High temperatures ; Hot Temperature ; Hydrophobicity ; Hydrothermal vent ecosystems ; Hydrothermal Vents ; Life Sciences ; Phylogenetics ; Polychaeta ; Prokaryotes ; Prokaryotic Cells ; Proteins ; Proteome - physiology ; Proteomes ; Residues ; Ribosomal proteins ; Streptomyces ; Studies</subject><ispartof>PloS one, 2012-02, Vol.7 (2), p.e31150</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Jollivet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Jollivet et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</citedby><cites>FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</cites><orcidid>0000-0002-2438-8383 ; 0000-0001-6418-3887 ; 0000-0002-7134-3217 ; 0000-0001-8042-1857 ; 0000-0003-0619-9316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22348046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01250921$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jollivet, Didier</creatorcontrib><creatorcontrib>Mary, Jean</creatorcontrib><creatorcontrib>Gagnière, Nicolas</creatorcontrib><creatorcontrib>Tanguy, Arnaud</creatorcontrib><creatorcontrib>Fontanillas, Eric</creatorcontrib><creatorcontrib>Boutet, Isabelle</creatorcontrib><creatorcontrib>Hourdez, Stéphane</creatorcontrib><creatorcontrib>Segurens, Béatrice</creatorcontrib><creatorcontrib>Weissenbach, Jean</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Lecompte, Odile</creatorcontrib><title>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.</description><subject>Acclimatization</subject><subject>Acids</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Alanine</subject><subject>Aliphatic compounds</subject><subject>Amino Acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology</subject><subject>Codon</subject><subject>Codons</subject><subject>Comparative analysis</subject><subject>Deep sea</subject><subject>Deep sea environments</subject><subject>Depth indicators</subject><subject>DNA sequencing</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Enzymes</subject><subject>Epidemiology</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Fines & penalties</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycine</subject><subject>High temperature</subject><subject>High temperatures</subject><subject>Hot Temperature</subject><subject>Hydrophobicity</subject><subject>Hydrothermal vent ecosystems</subject><subject>Hydrothermal Vents</subject><subject>Life Sciences</subject><subject>Phylogenetics</subject><subject>Polychaeta</subject><subject>Prokaryotes</subject><subject>Prokaryotic Cells</subject><subject>Proteins</subject><subject>Proteome - physiology</subject><subject>Proteomes</subject><subject>Residues</subject><subject>Ribosomal proteins</subject><subject>Streptomyces</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3g_9D0QLgnAPu-ZHk7YvwnKot7Bwh78efAlpOt1maZs1Sde7_97U9o6tKEgekk4_35nMZCaKXmC0xDTFb3emt51slnvTwRIhijFDj6JTnFOy4ATRx0fnk-jMuR1CjGacP41OCKFJhhJ-Gn2_scaDaSGWpdx76bXpYm_iWm_r2EO7Byt9b8HFOthriEF5E3bbahXXd6UdP2QTH6Dz8Y0JCq3jn8a2z6InlWwcPJ_28-jrh_dfLq8Wm-uP68vVZqFSwvxCAauAlBlDlHBSYK4wZ4TipFI5l5kqOM0IyVFFcIkwQFnhnNNcFgVimBCg59Gr0e--MU5MZXECU0IZywljgViPRGnkTuytbqW9E0Zq8dtg7FZI67VqQGSqDJfIK2A8S4hMswQSWqQVA-BZuFrw9W6K1hctlCpkbWUzczr_0-labM1BUJKmDA0OLkYH9R-yq9VGDDaECUM5wYeBfT0Fs-ZHD87_I72J2sqQge4qEwKrVjslVkmaYo7zJA_U8i9UWCWEtwxNVOlgnwkuZoLAeLj1W9k7J9afP_0_e_1tzr45YmuQja-dafqh9dwcTEZQWeOcheqhXBiJYQbuqyGGGRDTDATZy-MXehDdNz39BZUpAQY</recordid><startdate>20120210</startdate><enddate>20120210</enddate><creator>Jollivet, Didier</creator><creator>Mary, Jean</creator><creator>Gagnière, Nicolas</creator><creator>Tanguy, Arnaud</creator><creator>Fontanillas, Eric</creator><creator>Boutet, Isabelle</creator><creator>Hourdez, Stéphane</creator><creator>Segurens, Béatrice</creator><creator>Weissenbach, Jean</creator><creator>Poch, Olivier</creator><creator>Lecompte, Odile</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2438-8383</orcidid><orcidid>https://orcid.org/0000-0001-6418-3887</orcidid><orcidid>https://orcid.org/0000-0002-7134-3217</orcidid><orcidid>https://orcid.org/0000-0001-8042-1857</orcidid><orcidid>https://orcid.org/0000-0003-0619-9316</orcidid></search><sort><creationdate>20120210</creationdate><title>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</title><author>Jollivet, Didier ; Mary, Jean ; Gagnière, Nicolas ; Tanguy, Arnaud ; Fontanillas, Eric ; Boutet, Isabelle ; Hourdez, Stéphane ; Segurens, Béatrice ; Weissenbach, Jean ; Poch, Olivier ; Lecompte, Odile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-ce5fe2d8503262b16c1652314fc96a8cb6382290f21d01eedf19639abb05122e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acclimatization</topic><topic>Acids</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Alanine</topic><topic>Aliphatic compounds</topic><topic>Amino Acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology</topic><topic>Codon</topic><topic>Codons</topic><topic>Comparative analysis</topic><topic>Deep sea</topic><topic>Deep sea environments</topic><topic>Depth indicators</topic><topic>DNA sequencing</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Enzymes</topic><topic>Epidemiology</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Fines & penalties</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycine</topic><topic>High temperature</topic><topic>High temperatures</topic><topic>Hot Temperature</topic><topic>Hydrophobicity</topic><topic>Hydrothermal vent ecosystems</topic><topic>Hydrothermal Vents</topic><topic>Life Sciences</topic><topic>Phylogenetics</topic><topic>Polychaeta</topic><topic>Prokaryotes</topic><topic>Prokaryotic Cells</topic><topic>Proteins</topic><topic>Proteome - physiology</topic><topic>Proteomes</topic><topic>Residues</topic><topic>Ribosomal proteins</topic><topic>Streptomyces</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jollivet, Didier</creatorcontrib><creatorcontrib>Mary, Jean</creatorcontrib><creatorcontrib>Gagnière, Nicolas</creatorcontrib><creatorcontrib>Tanguy, Arnaud</creatorcontrib><creatorcontrib>Fontanillas, Eric</creatorcontrib><creatorcontrib>Boutet, Isabelle</creatorcontrib><creatorcontrib>Hourdez, Stéphane</creatorcontrib><creatorcontrib>Segurens, Béatrice</creatorcontrib><creatorcontrib>Weissenbach, Jean</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Lecompte, Odile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jollivet, Didier</au><au>Mary, Jean</au><au>Gagnière, Nicolas</au><au>Tanguy, Arnaud</au><au>Fontanillas, Eric</au><au>Boutet, Isabelle</au><au>Hourdez, Stéphane</au><au>Segurens, Béatrice</au><au>Weissenbach, Jean</au><au>Poch, Olivier</au><au>Lecompte, Odile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-02-10</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>e31150</spage><pages>e31150-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22348046</pmid><doi>10.1371/journal.pone.0031150</doi><tpages>e31150</tpages><orcidid>https://orcid.org/0000-0002-2438-8383</orcidid><orcidid>https://orcid.org/0000-0001-6418-3887</orcidid><orcidid>https://orcid.org/0000-0002-7134-3217</orcidid><orcidid>https://orcid.org/0000-0001-8042-1857</orcidid><orcidid>https://orcid.org/0000-0003-0619-9316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-02, Vol.7 (2), p.e31150 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1323559255 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acclimatization Acids Adaptation Adaptation, Physiological Alanine Aliphatic compounds Amino Acids Analysis Animals Biology Codon Codons Comparative analysis Deep sea Deep sea environments Depth indicators DNA sequencing Earth Sciences Environmental Sciences Enzymes Epidemiology Eukaryotes Evolution Fines & penalties Gene expression Gene sequencing Genomes Genomics Glycine High temperature High temperatures Hot Temperature Hydrophobicity Hydrothermal vent ecosystems Hydrothermal Vents Life Sciences Phylogenetics Polychaeta Prokaryotes Prokaryotic Cells Proteins Proteome - physiology Proteomes Residues Ribosomal proteins Streptomyces Studies |
title | Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteome%20adaptation%20to%20high%20temperatures%20in%20the%20ectothermic%20hydrothermal%20vent%20Pompeii%20worm&rft.jtitle=PloS%20one&rft.au=Jollivet,%20Didier&rft.date=2012-02-10&rft.volume=7&rft.issue=2&rft.spage=e31150&rft.pages=e31150-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0031150&rft_dat=%3Cgale_plos_%3EA477161949%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323559255&rft_id=info:pmid/22348046&rft_galeid=A477161949&rft_doaj_id=oai_doaj_org_article_8cd62b9fe56842a784e43b7f5ee686c1&rfr_iscdi=true |