An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity

With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-01, Vol.7 (1), p.e31057-e31057
Hauptverfasser: Li, Liqi, Zhang, Yuan, Zou, Lingyun, Li, Changqing, Yu, Bo, Zheng, Xiaoqi, Zhou, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e31057
container_issue 1
container_start_page e31057
container_title PloS one
container_volume 7
creator Li, Liqi
Zhang, Yuan
Zou, Lingyun
Li, Changqing
Yu, Bo
Zheng, Xiaoqi
Zhou, Yue
description With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.
doi_str_mv 10.1371/journal.pone.0031057
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323404111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476999782</galeid><doaj_id>oai_doaj_org_article_16c924c8810f451aa4937f7c500f6ee0</doaj_id><sourcerecordid>A476999782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6067-93af22ec83893e8d1fa4280b265c867fd0c9ae886e2cdf76933dbbfa81153e3c3</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbK1-A9GAoPiway5zybwIS_GyUCh4ew2ZzMlsaibZJjPifgU_tdnutOxIHyQPCTm_80_yPzlZ9pzgJWEVeXflx-CkXW69gyXGjOCiepCdkprRRUkxe3i0PsmexHiFccF4WT7OTihlmOWcnGZ_Vg6Bi9A3FpCyMkajDQSkfUAw_pRh5wej0Db4AYxDcWwUWDtaGZD1Sg7GuxSE1qib5RiN61AHDpB3g7e-26FEQeeDgYika5HsjfNIKtOiza4NfrvxjVFm2D3NHmlpIzyb5rPs-8cP384_Ly4uP63PVxcLVeKyWtRMakpBccZrBrwlWuaU44aWheJlpVusagmcl0BVq6uyZqxtGi05IQUDpthZ9vKgu7U-isnGKAijLMc5ISQR6wPRenkltsH0yQfhpRE3Gz50QoZkiwVBSlXTXHFOsM4LImVes0pXqsBYlwA4ab2fThubHloFbgjSzkTnEWc2ovO_BKNlUs2TwJtJIPjrEeIgehP3RZAO_BhFTeq6qKqCJfLVP-T9j5uoTqb7G6d9OlbtNcUqT3bVdcVpopb3UGm00BuVvpw2aX-W8HaWkJgBfg-dHGMU669f_p-9_DFnXx-xG5B22ERvx_13i3MwP4Aq-BgD6DuPCRb7jrl1Q-w7Rkwdk9JeHNfnLum2RdhfvZ0UAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323404111</pqid></control><display><type>article</type><title>An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Liqi ; Zhang, Yuan ; Zou, Lingyun ; Li, Changqing ; Yu, Bo ; Zheng, Xiaoqi ; Zhou, Yue</creator><contributor>Brusic, Vladimir</contributor><creatorcontrib>Li, Liqi ; Zhang, Yuan ; Zou, Lingyun ; Li, Changqing ; Yu, Bo ; Zheng, Xiaoqi ; Zhou, Yue ; Brusic, Vladimir</creatorcontrib><description>With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0031057</identifier><identifier>PMID: 22303481</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acids ; Amino Acids - metabolism ; Annotations ; Automation ; Bioinformatics ; Biology ; Classifiers ; Computer Science ; Databases, Protein ; Datasets ; Eukaryotic Cells - metabolism ; Genes - genetics ; Humans ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Localization ; Mathematics ; Methods ; Molecular Sequence Annotation - methods ; Ontology ; Orthopedics ; Pattern recognition ; Peptides ; Predictions ; Proteins ; Proteins - metabolism ; Subcellular Fractions - metabolism ; Support Vector Machine ; Support vector machines ; Voting</subject><ispartof>PloS one, 2012-01, Vol.7 (1), p.e31057-e31057</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Li et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6067-93af22ec83893e8d1fa4280b265c867fd0c9ae886e2cdf76933dbbfa81153e3c3</citedby><cites>FETCH-LOGICAL-c6067-93af22ec83893e8d1fa4280b265c867fd0c9ae886e2cdf76933dbbfa81153e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268814/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268814/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22303481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Brusic, Vladimir</contributor><creatorcontrib>Li, Liqi</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Zou, Lingyun</creatorcontrib><creatorcontrib>Li, Changqing</creatorcontrib><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Zheng, Xiaoqi</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><title>An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Annotations</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Databases, Protein</subject><subject>Datasets</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Genes - genetics</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Localization</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Molecular Sequence Annotation - methods</subject><subject>Ontology</subject><subject>Orthopedics</subject><subject>Pattern recognition</subject><subject>Peptides</subject><subject>Predictions</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Subcellular Fractions - metabolism</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Voting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbK1-A9GAoPiway5zybwIS_GyUCh4ew2ZzMlsaibZJjPifgU_tdnutOxIHyQPCTm_80_yPzlZ9pzgJWEVeXflx-CkXW69gyXGjOCiepCdkprRRUkxe3i0PsmexHiFccF4WT7OTihlmOWcnGZ_Vg6Bi9A3FpCyMkajDQSkfUAw_pRh5wej0Db4AYxDcWwUWDtaGZD1Sg7GuxSE1qib5RiN61AHDpB3g7e-26FEQeeDgYika5HsjfNIKtOiza4NfrvxjVFm2D3NHmlpIzyb5rPs-8cP384_Ly4uP63PVxcLVeKyWtRMakpBccZrBrwlWuaU44aWheJlpVusagmcl0BVq6uyZqxtGi05IQUDpthZ9vKgu7U-isnGKAijLMc5ISQR6wPRenkltsH0yQfhpRE3Gz50QoZkiwVBSlXTXHFOsM4LImVes0pXqsBYlwA4ab2fThubHloFbgjSzkTnEWc2ovO_BKNlUs2TwJtJIPjrEeIgehP3RZAO_BhFTeq6qKqCJfLVP-T9j5uoTqb7G6d9OlbtNcUqT3bVdcVpopb3UGm00BuVvpw2aX-W8HaWkJgBfg-dHGMU669f_p-9_DFnXx-xG5B22ERvx_13i3MwP4Aq-BgD6DuPCRb7jrl1Q-w7Rkwdk9JeHNfnLum2RdhfvZ0UAQ</recordid><startdate>20120130</startdate><enddate>20120130</enddate><creator>Li, Liqi</creator><creator>Zhang, Yuan</creator><creator>Zou, Lingyun</creator><creator>Li, Changqing</creator><creator>Yu, Bo</creator><creator>Zheng, Xiaoqi</creator><creator>Zhou, Yue</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120130</creationdate><title>An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity</title><author>Li, Liqi ; Zhang, Yuan ; Zou, Lingyun ; Li, Changqing ; Yu, Bo ; Zheng, Xiaoqi ; Zhou, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6067-93af22ec83893e8d1fa4280b265c867fd0c9ae886e2cdf76933dbbfa81153e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Annotations</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Databases, Protein</topic><topic>Datasets</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Genes - genetics</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Localization</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Molecular Sequence Annotation - methods</topic><topic>Ontology</topic><topic>Orthopedics</topic><topic>Pattern recognition</topic><topic>Peptides</topic><topic>Predictions</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Subcellular Fractions - metabolism</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liqi</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Zou, Lingyun</creatorcontrib><creatorcontrib>Li, Changqing</creatorcontrib><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Zheng, Xiaoqi</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liqi</au><au>Zhang, Yuan</au><au>Zou, Lingyun</au><au>Li, Changqing</au><au>Yu, Bo</au><au>Zheng, Xiaoqi</au><au>Zhou, Yue</au><au>Brusic, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-01-30</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>e31057</spage><epage>e31057</epage><pages>e31057-e31057</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22303481</pmid><doi>10.1371/journal.pone.0031057</doi><tpages>e31057</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-01, Vol.7 (1), p.e31057-e31057
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1323404111
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Amino acids
Amino Acids - metabolism
Annotations
Automation
Bioinformatics
Biology
Classifiers
Computer Science
Databases, Protein
Datasets
Eukaryotic Cells - metabolism
Genes - genetics
Humans
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Localization
Mathematics
Methods
Molecular Sequence Annotation - methods
Ontology
Orthopedics
Pattern recognition
Peptides
Predictions
Proteins
Proteins - metabolism
Subcellular Fractions - metabolism
Support Vector Machine
Support vector machines
Voting
title An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20classifier%20for%20eukaryotic%20protein%20subcellular%20location%20prediction%20using%20gene%20ontology%20categories%20and%20amino%20acid%20hydrophobicity&rft.jtitle=PloS%20one&rft.au=Li,%20Liqi&rft.date=2012-01-30&rft.volume=7&rft.issue=1&rft.spage=e31057&rft.epage=e31057&rft.pages=e31057-e31057&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0031057&rft_dat=%3Cgale_plos_%3EA476999782%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323404111&rft_id=info:pmid/22303481&rft_galeid=A476999782&rft_doaj_id=oai_doaj_org_article_16c924c8810f451aa4937f7c500f6ee0&rfr_iscdi=true