Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction
Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-01, Vol.7 (1), p.e30387 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e30387 |
container_title | PloS one |
container_volume | 7 |
creator | Bao, Jun-Xiang Chang, Hui Lv, Yong-Gang Yu, Jin-Wen Bai, Yun-Gang Liu, Huan Cai, Yue Wang, Ling Ma, Jin Chang, Yao-Ming |
description | Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91(phox), a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O₂·⁻) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91(phox) colocalization to LRs clusters which were proved to mediate the HG induced O₂·⁻ formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91(phox) colocalization to LRs clusters, O₂·⁻ formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O₂·⁻ production. |
doi_str_mv | 10.1371/journal.pone.0030387 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323070737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477167424</galeid><doaj_id>oai_doaj_org_article_b64f9845423b424aac6fe9d443463039</doaj_id><sourcerecordid>A477167424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-69e87b1a8f77e3d74ae4214c77721b71e0914e2edf6fc651e99950b486ef2c43</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLwoIPHfOvSfsiLMuqAwMLuvga0vRmJkObjEkrO9_ezE53mYKC9KEl53dPLqcny95itMBU4E9bPwanusXOO1ggRBGtxLPsHNeUFJwg-vzk-yx7FeMWoZJWnL_MzgghJU3ieWZX--ij76HooW-CcpCbMVrv8h5aqwZo8zjuIPh720K-C74d9XCQrcs3-ySsu71W0FtVWJe0xINr_bCBzqoub_fRjO5h4nX2wqguwpvpfZHdfbm5u_5WrG6_Lq-vVoXmNR4KXkMlGqwqIwTQVjAFjGCmhRAENwIDqjEDAq3hRvMSQ13XJWpYxcEQzehF9v5ou-t8lFNIUWJKKBJIUJGI5ZFovdrKXbC9CnvplZUPBz6spQqD1R3IhjNTV6xkhDaMMKU0N1C3jFHGU-B18vo83TY2KTANbgiqm5nOFWc3cu1_S0pKQThOBh8mg-B_jRCHf6w8UWuVtrLO-GSmexu1vGJCYC7Sdola_IVKT5v-j041MTadzwY-zgYSM8D9sFZjjHL54_v_s7c_5-zlCbsB1Q2b6LvxUIM4B9kR1MHHGMA8JYeRPLT8MQ15aLmcWp7G3p2m_jT0WGv6B-pO-VQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323070737</pqid></control><display><type>article</type><title>Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bao, Jun-Xiang ; Chang, Hui ; Lv, Yong-Gang ; Yu, Jin-Wen ; Bai, Yun-Gang ; Liu, Huan ; Cai, Yue ; Wang, Ling ; Ma, Jin ; Chang, Yao-Ming</creator><creatorcontrib>Bao, Jun-Xiang ; Chang, Hui ; Lv, Yong-Gang ; Yu, Jin-Wen ; Bai, Yun-Gang ; Liu, Huan ; Cai, Yue ; Wang, Ling ; Ma, Jin ; Chang, Yao-Ming</creatorcontrib><description>Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91(phox), a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O₂·⁻) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91(phox) colocalization to LRs clusters which were proved to mediate the HG induced O₂·⁻ formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91(phox) colocalization to LRs clusters, O₂·⁻ formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O₂·⁻ production.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0030387</identifier><identifier>PMID: 22253932</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alcohol ; Animals ; Aorta ; Apoptosis ; beta-N-Acetylhexosaminidases - metabolism ; Biology ; Biomarkers - metabolism ; Body composition ; Cathepsin C - metabolism ; Cellular manufacture ; Ceramide ; Ceramides - pharmacology ; Clustering ; Clusters ; Culture Media ; Diabetes ; Endothelial cells ; Endothelium ; Endothelium - drug effects ; Endothelium - physiopathology ; Enzymes ; Exocytosis ; Fluorescence ; Gene Silencing - drug effects ; Glucose ; Glucose - pharmacology ; Heart failure ; Human Umbilical Vein Endothelial Cells - drug effects ; Human Umbilical Vein Endothelial Cells - enzymology ; Human Umbilical Vein Endothelial Cells - pathology ; Humans ; Hyperglycemia ; Hyperglycemia - metabolism ; Hyperglycemia - pathology ; Hyperglycemia - physiopathology ; In Vitro Techniques ; Lipid rafts ; Lipids ; Lysosomes - drug effects ; Lysosomes - metabolism ; Medicine ; Membrane fusion ; Membrane Fusion - drug effects ; Membrane Microdomains - drug effects ; Membrane Microdomains - enzymology ; Membrane proteins ; NAD(P)H oxidase ; NADPH Oxidases - metabolism ; Neutrophils ; Nitric oxide ; Nitric Oxide - metabolism ; Oxidases ; Oxidative stress ; Phosphorylation ; Physiology ; Plasma ; Protein Transport - drug effects ; Rafts ; Rats ; RNA, Small Interfering - metabolism ; Sphingomyelin Phosphodiesterase - genetics ; Superoxide ; Superoxides ; Superoxides - metabolism ; Transfection ; Umbilical vein ; Vasodilation ; Vasodilation - drug effects ; Veins & arteries</subject><ispartof>PloS one, 2012-01, Vol.7 (1), p.e30387</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Bao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Bao et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-69e87b1a8f77e3d74ae4214c77721b71e0914e2edf6fc651e99950b486ef2c43</citedby><cites>FETCH-LOGICAL-c691t-69e87b1a8f77e3d74ae4214c77721b71e0914e2edf6fc651e99950b486ef2c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257261/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257261/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22253932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Jun-Xiang</creatorcontrib><creatorcontrib>Chang, Hui</creatorcontrib><creatorcontrib>Lv, Yong-Gang</creatorcontrib><creatorcontrib>Yu, Jin-Wen</creatorcontrib><creatorcontrib>Bai, Yun-Gang</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Cai, Yue</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><creatorcontrib>Chang, Yao-Ming</creatorcontrib><title>Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91(phox), a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O₂·⁻) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91(phox) colocalization to LRs clusters which were proved to mediate the HG induced O₂·⁻ formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91(phox) colocalization to LRs clusters, O₂·⁻ formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O₂·⁻ production.</description><subject>Alcohol</subject><subject>Animals</subject><subject>Aorta</subject><subject>Apoptosis</subject><subject>beta-N-Acetylhexosaminidases - metabolism</subject><subject>Biology</subject><subject>Biomarkers - metabolism</subject><subject>Body composition</subject><subject>Cathepsin C - metabolism</subject><subject>Cellular manufacture</subject><subject>Ceramide</subject><subject>Ceramides - pharmacology</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Culture Media</subject><subject>Diabetes</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Endothelium - drug effects</subject><subject>Endothelium - physiopathology</subject><subject>Enzymes</subject><subject>Exocytosis</subject><subject>Fluorescence</subject><subject>Gene Silencing - drug effects</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Heart failure</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - enzymology</subject><subject>Human Umbilical Vein Endothelial Cells - pathology</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - metabolism</subject><subject>Hyperglycemia - pathology</subject><subject>Hyperglycemia - physiopathology</subject><subject>In Vitro Techniques</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Medicine</subject><subject>Membrane fusion</subject><subject>Membrane Fusion - drug effects</subject><subject>Membrane Microdomains - drug effects</subject><subject>Membrane Microdomains - enzymology</subject><subject>Membrane proteins</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidases - metabolism</subject><subject>Neutrophils</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidases</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Protein Transport - drug effects</subject><subject>Rafts</subject><subject>Rats</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sphingomyelin Phosphodiesterase - genetics</subject><subject>Superoxide</subject><subject>Superoxides</subject><subject>Superoxides - metabolism</subject><subject>Transfection</subject><subject>Umbilical vein</subject><subject>Vasodilation</subject><subject>Vasodilation - drug effects</subject><subject>Veins & arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLwoIPHfOvSfsiLMuqAwMLuvga0vRmJkObjEkrO9_ezE53mYKC9KEl53dPLqcny95itMBU4E9bPwanusXOO1ggRBGtxLPsHNeUFJwg-vzk-yx7FeMWoZJWnL_MzgghJU3ieWZX--ij76HooW-CcpCbMVrv8h5aqwZo8zjuIPh720K-C74d9XCQrcs3-ySsu71W0FtVWJe0xINr_bCBzqoub_fRjO5h4nX2wqguwpvpfZHdfbm5u_5WrG6_Lq-vVoXmNR4KXkMlGqwqIwTQVjAFjGCmhRAENwIDqjEDAq3hRvMSQ13XJWpYxcEQzehF9v5ou-t8lFNIUWJKKBJIUJGI5ZFovdrKXbC9CnvplZUPBz6spQqD1R3IhjNTV6xkhDaMMKU0N1C3jFHGU-B18vo83TY2KTANbgiqm5nOFWc3cu1_S0pKQThOBh8mg-B_jRCHf6w8UWuVtrLO-GSmexu1vGJCYC7Sdola_IVKT5v-j041MTadzwY-zgYSM8D9sFZjjHL54_v_s7c_5-zlCbsB1Q2b6LvxUIM4B9kR1MHHGMA8JYeRPLT8MQ15aLmcWp7G3p2m_jT0WGv6B-pO-VQ</recordid><startdate>20120112</startdate><enddate>20120112</enddate><creator>Bao, Jun-Xiang</creator><creator>Chang, Hui</creator><creator>Lv, Yong-Gang</creator><creator>Yu, Jin-Wen</creator><creator>Bai, Yun-Gang</creator><creator>Liu, Huan</creator><creator>Cai, Yue</creator><creator>Wang, Ling</creator><creator>Ma, Jin</creator><creator>Chang, Yao-Ming</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120112</creationdate><title>Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction</title><author>Bao, Jun-Xiang ; Chang, Hui ; Lv, Yong-Gang ; Yu, Jin-Wen ; Bai, Yun-Gang ; Liu, Huan ; Cai, Yue ; Wang, Ling ; Ma, Jin ; Chang, Yao-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-69e87b1a8f77e3d74ae4214c77721b71e0914e2edf6fc651e99950b486ef2c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alcohol</topic><topic>Animals</topic><topic>Aorta</topic><topic>Apoptosis</topic><topic>beta-N-Acetylhexosaminidases - metabolism</topic><topic>Biology</topic><topic>Biomarkers - metabolism</topic><topic>Body composition</topic><topic>Cathepsin C - metabolism</topic><topic>Cellular manufacture</topic><topic>Ceramide</topic><topic>Ceramides - pharmacology</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Culture Media</topic><topic>Diabetes</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Endothelium - drug effects</topic><topic>Endothelium - physiopathology</topic><topic>Enzymes</topic><topic>Exocytosis</topic><topic>Fluorescence</topic><topic>Gene Silencing - drug effects</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Heart failure</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - enzymology</topic><topic>Human Umbilical Vein Endothelial Cells - pathology</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - metabolism</topic><topic>Hyperglycemia - pathology</topic><topic>Hyperglycemia - physiopathology</topic><topic>In Vitro Techniques</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Medicine</topic><topic>Membrane fusion</topic><topic>Membrane Fusion - drug effects</topic><topic>Membrane Microdomains - drug effects</topic><topic>Membrane Microdomains - enzymology</topic><topic>Membrane proteins</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidases - metabolism</topic><topic>Neutrophils</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidases</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Protein Transport - drug effects</topic><topic>Rafts</topic><topic>Rats</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sphingomyelin Phosphodiesterase - genetics</topic><topic>Superoxide</topic><topic>Superoxides</topic><topic>Superoxides - metabolism</topic><topic>Transfection</topic><topic>Umbilical vein</topic><topic>Vasodilation</topic><topic>Vasodilation - drug effects</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Jun-Xiang</creatorcontrib><creatorcontrib>Chang, Hui</creatorcontrib><creatorcontrib>Lv, Yong-Gang</creatorcontrib><creatorcontrib>Yu, Jin-Wen</creatorcontrib><creatorcontrib>Bai, Yun-Gang</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Cai, Yue</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><creatorcontrib>Chang, Yao-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Jun-Xiang</au><au>Chang, Hui</au><au>Lv, Yong-Gang</au><au>Yu, Jin-Wen</au><au>Bai, Yun-Gang</au><au>Liu, Huan</au><au>Cai, Yue</au><au>Wang, Ling</au><au>Ma, Jin</au><au>Chang, Yao-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-01-12</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>e30387</spage><pages>e30387-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91(phox), a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O₂·⁻) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91(phox) colocalization to LRs clusters which were proved to mediate the HG induced O₂·⁻ formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91(phox) colocalization to LRs clusters, O₂·⁻ formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O₂·⁻ production.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22253932</pmid><doi>10.1371/journal.pone.0030387</doi><tpages>e30387</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-01, Vol.7 (1), p.e30387 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1323070737 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Alcohol Animals Aorta Apoptosis beta-N-Acetylhexosaminidases - metabolism Biology Biomarkers - metabolism Body composition Cathepsin C - metabolism Cellular manufacture Ceramide Ceramides - pharmacology Clustering Clusters Culture Media Diabetes Endothelial cells Endothelium Endothelium - drug effects Endothelium - physiopathology Enzymes Exocytosis Fluorescence Gene Silencing - drug effects Glucose Glucose - pharmacology Heart failure Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - enzymology Human Umbilical Vein Endothelial Cells - pathology Humans Hyperglycemia Hyperglycemia - metabolism Hyperglycemia - pathology Hyperglycemia - physiopathology In Vitro Techniques Lipid rafts Lipids Lysosomes - drug effects Lysosomes - metabolism Medicine Membrane fusion Membrane Fusion - drug effects Membrane Microdomains - drug effects Membrane Microdomains - enzymology Membrane proteins NAD(P)H oxidase NADPH Oxidases - metabolism Neutrophils Nitric oxide Nitric Oxide - metabolism Oxidases Oxidative stress Phosphorylation Physiology Plasma Protein Transport - drug effects Rafts Rats RNA, Small Interfering - metabolism Sphingomyelin Phosphodiesterase - genetics Superoxide Superoxides Superoxides - metabolism Transfection Umbilical vein Vasodilation Vasodilation - drug effects Veins & arteries |
title | Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysosome-membrane%20fusion%20mediated%20superoxide%20production%20in%20hyperglycaemia-induced%20endothelial%20dysfunction&rft.jtitle=PloS%20one&rft.au=Bao,%20Jun-Xiang&rft.date=2012-01-12&rft.volume=7&rft.issue=1&rft.spage=e30387&rft.pages=e30387-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0030387&rft_dat=%3Cgale_plos_%3EA477167424%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323070737&rft_id=info:pmid/22253932&rft_galeid=A477167424&rft_doaj_id=oai_doaj_org_article_b64f9845423b424aac6fe9d443463039&rfr_iscdi=true |