Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication

Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-01, Vol.7 (1), p.e30191-e30191
Hauptverfasser: Zhong, Yanxin, Liao, Ying, Fang, Shouguo, Tam, James P, Liu, Ding Xiang
Format: Artikel
Sprache:eng
Schlagworte:
DNA
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e30191
container_issue 1
container_start_page e30191
container_title PloS one
container_volume 7
creator Zhong, Yanxin
Liao, Ying
Fang, Shouguo
Tam, James P
Liu, Ding Xiang
description Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.
doi_str_mv 10.1371/journal.pone.0030191
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1322492402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477167524</galeid><doaj_id>oai_doaj_org_article_a11206ac1e564231b25223cf130ed538</doaj_id><sourcerecordid>A477167524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c789t-f5ab1f2ef47cf8fe7badcdfdb5c948a5ab658174460f4d2ef7c10155f8d296933</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLC4pgx3y3vRHWxY-BlQV1vQ1pmsxkTJuatIt76y83neksU9mLpRcpOc95k_OenCR5DsEC4hy-27jBt8IuOteqBQAYwBI-SI5hiVHGEMAPD_6PkichbACguGDscXKEEKK4hMVx8veqy7xaDVb0xrWp0-lXaTOYirZOP4hfaXWTSuddK66NH0JqWq3knlwPjWjfpjEk2m2CaE0jbCqVtSFtXD2qqpCKznW9CyZsoSgUGa86a-T20KfJIy1sUM-m9SS5-vTxx_mX7OLy8_L87CKTeVH2maaighopTXKpC63yStSy1nVFZUkKEaOMFjAnhAFN6sjlEgJIqS5qVLIS45Pk5U63sy7wyb7AIUaIlIgAFInljqid2PDOx2r8DXfC8O2G8ysufG-kVVxAiAATEirKCMKwQhQhLDXEQNXR5qj1fjptqBpVS9X2se6Z6DzSmjVfuWuOEWUIj9d9PQl493tQoeeNCaO1olVuCLykhNEcknuQkBWUYFRG8vQ_8m4bJmolYqWx5S5eUI6a_IzkOWQ5RSRSizuo-NWqMTI-Sm3i_izhzSwhMr3606_EEAJffv92f_by55x9dcCulbD9Ojg7jG8rzEGyA6V3IXilb7sBAR9nau8GH2eKTzMV014cdvI2aT9E-B_yFRyS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322492402</pqid></control><display><type>article</type><title>Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhong, Yanxin ; Liao, Ying ; Fang, Shouguo ; Tam, James P ; Liu, Ding Xiang</creator><contributor>Kim, Baek</contributor><creatorcontrib>Zhong, Yanxin ; Liao, Ying ; Fang, Shouguo ; Tam, James P ; Liu, Ding Xiang ; Kim, Baek</creatorcontrib><description>Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0030191</identifier><identifier>PMID: 22253918</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; Adenoviruses ; AKT protein ; Animals ; Apoptosis ; Apoptosis - genetics ; BAK protein ; bcl-2 Homologous Antagonist-Killer Protein - genetics ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; Biology ; Bronchitis ; Cancer ; Cell cycle ; Cell death ; Cell survival ; Cells (Biology) ; Cellular stress response ; Cercopithecus aethiops ; Chick Embryo ; Chickens - virology ; Chlamydia ; Chlamydia trachomatis ; CHOP protein ; Coronaviridae ; Coronavirus ; Coronavirus Infections - genetics ; Coronavirus Infections - virology ; Coronaviruses ; Cytochrome ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; Down-Regulation - genetics ; Eggs ; Endoplasmic reticulum ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - virology ; Gene expression ; Gene Knockdown Techniques ; Gene regulation ; Genes ; Health aspects ; Humans ; Infection ; Infections ; Infectious bronchitis virus ; Kinases ; Leukemia ; Mammalian cells ; Mammals ; Mcl-1 protein ; Melanoma ; Myeloid Cell Leukemia Sequence 1 Protein ; Myeloid cells ; Oligonucleotide Array Sequence Analysis ; Pathogenesis ; Phosphatidylinositol 3-Kinases - metabolism ; phosphoinositides ; Poly(ADP-ribose) Polymerases - metabolism ; Progeny ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Regulations ; Replication ; Respiratory tract diseases ; Ribonucleic acid ; RNA ; RNA Interference ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Signal transduction ; Signaling ; siRNA ; Transcription ; Transcription Factor CHOP - metabolism ; Transcription, Genetic ; Translation ; Tumor necrosis factor-TNF ; Tumors ; Up-regulation ; Up-Regulation - genetics ; Vero Cells ; Virus replication ; Virus Replication - physiology ; Viruses</subject><ispartof>PloS one, 2012-01, Vol.7 (1), p.e30191-e30191</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Zhong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Zhong et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c789t-f5ab1f2ef47cf8fe7badcdfdb5c948a5ab658174460f4d2ef7c10155f8d296933</citedby><cites>FETCH-LOGICAL-c789t-f5ab1f2ef47cf8fe7badcdfdb5c948a5ab658174460f4d2ef7c10155f8d296933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256233/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256233/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22253918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kim, Baek</contributor><creatorcontrib>Zhong, Yanxin</creatorcontrib><creatorcontrib>Liao, Ying</creatorcontrib><creatorcontrib>Fang, Shouguo</creatorcontrib><creatorcontrib>Tam, James P</creatorcontrib><creatorcontrib>Liu, Ding Xiang</creatorcontrib><title>Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Adenoviruses</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>BAK protein</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - genetics</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>Biology</subject><subject>Bronchitis</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell survival</subject><subject>Cells (Biology)</subject><subject>Cellular stress response</subject><subject>Cercopithecus aethiops</subject><subject>Chick Embryo</subject><subject>Chickens - virology</subject><subject>Chlamydia</subject><subject>Chlamydia trachomatis</subject><subject>CHOP protein</subject><subject>Coronaviridae</subject><subject>Coronavirus</subject><subject>Coronavirus Infections - genetics</subject><subject>Coronavirus Infections - virology</subject><subject>Coronaviruses</subject><subject>Cytochrome</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Down-Regulation - genetics</subject><subject>Eggs</subject><subject>Endoplasmic reticulum</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - virology</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectious bronchitis virus</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Mcl-1 protein</subject><subject>Melanoma</subject><subject>Myeloid Cell Leukemia Sequence 1 Protein</subject><subject>Myeloid cells</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pathogenesis</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>phosphoinositides</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Progeny</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Regulations</subject><subject>Replication</subject><subject>Respiratory tract diseases</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Transcription</subject><subject>Transcription Factor CHOP - metabolism</subject><subject>Transcription, Genetic</subject><subject>Translation</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><subject>Up-regulation</subject><subject>Up-Regulation - genetics</subject><subject>Vero Cells</subject><subject>Virus replication</subject><subject>Virus Replication - physiology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLC4pgx3y3vRHWxY-BlQV1vQ1pmsxkTJuatIt76y83neksU9mLpRcpOc95k_OenCR5DsEC4hy-27jBt8IuOteqBQAYwBI-SI5hiVHGEMAPD_6PkichbACguGDscXKEEKK4hMVx8veqy7xaDVb0xrWp0-lXaTOYirZOP4hfaXWTSuddK66NH0JqWq3knlwPjWjfpjEk2m2CaE0jbCqVtSFtXD2qqpCKznW9CyZsoSgUGa86a-T20KfJIy1sUM-m9SS5-vTxx_mX7OLy8_L87CKTeVH2maaighopTXKpC63yStSy1nVFZUkKEaOMFjAnhAFN6sjlEgJIqS5qVLIS45Pk5U63sy7wyb7AIUaIlIgAFInljqid2PDOx2r8DXfC8O2G8ysufG-kVVxAiAATEirKCMKwQhQhLDXEQNXR5qj1fjptqBpVS9X2se6Z6DzSmjVfuWuOEWUIj9d9PQl493tQoeeNCaO1olVuCLykhNEcknuQkBWUYFRG8vQ_8m4bJmolYqWx5S5eUI6a_IzkOWQ5RSRSizuo-NWqMTI-Sm3i_izhzSwhMr3606_EEAJffv92f_by55x9dcCulbD9Ojg7jG8rzEGyA6V3IXilb7sBAR9nau8GH2eKTzMV014cdvI2aT9E-B_yFRyS</recordid><startdate>20120111</startdate><enddate>20120111</enddate><creator>Zhong, Yanxin</creator><creator>Liao, Ying</creator><creator>Fang, Shouguo</creator><creator>Tam, James P</creator><creator>Liu, Ding Xiang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120111</creationdate><title>Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication</title><author>Zhong, Yanxin ; Liao, Ying ; Fang, Shouguo ; Tam, James P ; Liu, Ding Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c789t-f5ab1f2ef47cf8fe7badcdfdb5c948a5ab658174460f4d2ef7c10155f8d296933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Adenoviruses</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>BAK protein</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - genetics</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>Biology</topic><topic>Bronchitis</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell survival</topic><topic>Cells (Biology)</topic><topic>Cellular stress response</topic><topic>Cercopithecus aethiops</topic><topic>Chick Embryo</topic><topic>Chickens - virology</topic><topic>Chlamydia</topic><topic>Chlamydia trachomatis</topic><topic>CHOP protein</topic><topic>Coronaviridae</topic><topic>Coronavirus</topic><topic>Coronavirus Infections - genetics</topic><topic>Coronavirus Infections - virology</topic><topic>Coronaviruses</topic><topic>Cytochrome</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Down-Regulation - genetics</topic><topic>Eggs</topic><topic>Endoplasmic reticulum</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - virology</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectious bronchitis virus</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Mcl-1 protein</topic><topic>Melanoma</topic><topic>Myeloid Cell Leukemia Sequence 1 Protein</topic><topic>Myeloid cells</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pathogenesis</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>phosphoinositides</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Progeny</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Regulations</topic><topic>Replication</topic><topic>Respiratory tract diseases</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Transcription</topic><topic>Transcription Factor CHOP - metabolism</topic><topic>Transcription, Genetic</topic><topic>Translation</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><topic>Up-regulation</topic><topic>Up-Regulation - genetics</topic><topic>Vero Cells</topic><topic>Virus replication</topic><topic>Virus Replication - physiology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yanxin</creatorcontrib><creatorcontrib>Liao, Ying</creatorcontrib><creatorcontrib>Fang, Shouguo</creatorcontrib><creatorcontrib>Tam, James P</creatorcontrib><creatorcontrib>Liu, Ding Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yanxin</au><au>Liao, Ying</au><au>Fang, Shouguo</au><au>Tam, James P</au><au>Liu, Ding Xiang</au><au>Kim, Baek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-01-11</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>e30191</spage><epage>e30191</epage><pages>e30191-e30191</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22253918</pmid><doi>10.1371/journal.pone.0030191</doi><tpages>e30191</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-01, Vol.7 (1), p.e30191-e30191
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1322492402
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects 1-Phosphatidylinositol 3-kinase
Adenoviruses
AKT protein
Animals
Apoptosis
Apoptosis - genetics
BAK protein
bcl-2 Homologous Antagonist-Killer Protein - genetics
bcl-2 Homologous Antagonist-Killer Protein - metabolism
Biology
Bronchitis
Cancer
Cell cycle
Cell death
Cell survival
Cells (Biology)
Cellular stress response
Cercopithecus aethiops
Chick Embryo
Chickens - virology
Chlamydia
Chlamydia trachomatis
CHOP protein
Coronaviridae
Coronavirus
Coronavirus Infections - genetics
Coronavirus Infections - virology
Coronaviruses
Cytochrome
Cytotoxicity
Deoxyribonucleic acid
DNA
Down-Regulation - genetics
Eggs
Endoplasmic reticulum
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - metabolism
Fibroblasts
Fibroblasts - metabolism
Fibroblasts - virology
Gene expression
Gene Knockdown Techniques
Gene regulation
Genes
Health aspects
Humans
Infection
Infections
Infectious bronchitis virus
Kinases
Leukemia
Mammalian cells
Mammals
Mcl-1 protein
Melanoma
Myeloid Cell Leukemia Sequence 1 Protein
Myeloid cells
Oligonucleotide Array Sequence Analysis
Pathogenesis
Phosphatidylinositol 3-Kinases - metabolism
phosphoinositides
Poly(ADP-ribose) Polymerases - metabolism
Progeny
Protein Biosynthesis
Protein synthesis
Proteins
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Regulations
Replication
Respiratory tract diseases
Ribonucleic acid
RNA
RNA Interference
RNA, Messenger - genetics
RNA, Messenger - metabolism
Signal transduction
Signaling
siRNA
Transcription
Transcription Factor CHOP - metabolism
Transcription, Genetic
Translation
Tumor necrosis factor-TNF
Tumors
Up-regulation
Up-Regulation - genetics
Vero Cells
Virus replication
Virus Replication - physiology
Viruses
title Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Up-regulation%20of%20Mcl-1%20and%20Bak%20by%20coronavirus%20infection%20of%20human,%20avian%20and%20animal%20cells%20modulates%20apoptosis%20and%20viral%20replication&rft.jtitle=PloS%20one&rft.au=Zhong,%20Yanxin&rft.date=2012-01-11&rft.volume=7&rft.issue=1&rft.spage=e30191&rft.epage=e30191&rft.pages=e30191-e30191&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0030191&rft_dat=%3Cgale_plos_%3EA477167524%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322492402&rft_id=info:pmid/22253918&rft_galeid=A477167524&rft_doaj_id=oai_doaj_org_article_a11206ac1e564231b25223cf130ed538&rfr_iscdi=true