Development of a model system to identify differences in spring and winter oat
Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originatin...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-01, Vol.7 (1), p.e29792-e29792 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e29792 |
---|---|
container_issue | 1 |
container_start_page | e29792 |
container_title | PloS one |
container_volume | 7 |
creator | Chawade, Aakash Lindén, Pernilla Bräutigam, Marcus Jonsson, Rickard Jonsson, Anders Moritz, Thomas Olsson, Olof |
description | Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding. |
doi_str_mv | 10.1371/journal.pone.0029792 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1322478363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477169797</galeid><doaj_id>oai_doaj_org_article_a53828264ee24a54a3047f5427e93a75</doaj_id><sourcerecordid>A477169797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-1b0ab649c95b7cbcef120e2c6517ddde1518763f96824cc5f909e1f965f91d8d3</originalsourceid><addsrcrecordid>eNqNk0tr3DAUhU1padK0_6C0gkJLFzPVy5K9KYT0NRAa6GsrZOnao8G2HMtOOv--mowTxiWU4oWkq-8c20e6SfKc4CVhkrzb-LFvdb3sfAtLjGkuc_ogOSY5owtBMXt4MD9KnoSwwThlmRCPkyNKacpkRo-Trx_gCmrfNdAOyJdIo8ZbqFHYhgEaNHjkbNxy5RZZV5bQQ2sgINei0PWurZBuLbp27QA98np4mjwqdR3g2TSeJD8_ffxx9mVxfvF5dXZ6vjBSyGFBCqwLwXOTp4U0hYGSUAzUiJRIay2QlGRSsDIXGeXGpGWOcyBxGWfEZpadJC_3vl3tg5qiCIowSrnMmGCRWO0J6_VGxW9tdL9VXjt1U_B9pXQ_OFOD0jEWmlHBASjXKdcMc1mmnErImZZp9FrsvcI1dGMxcwv1WOh-N6gAilOBs3_y1dipWKpucCoZT_PIv5_-ZiwasCYG3ut6JpvvtG6tKn-lWDzGDJNo8GYy6P3lCGFQjQsG6lq34MegciKylOOURvLVX-T94U1UpWM-ri19fK3ZeapTLiUR8bLJSC3voeJjoXEmXsvSxfpM8HYmiMwAv4dKjyGo1fdv_89e_Jqzrw_YNeh6WAdfj4PzbZiDfA-a3ofQQ3mXMcFq11W3aahdV6mpq6LsxeH53Ilu24j9AY8_HRc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322478363</pqid></control><display><type>article</type><title>Development of a model system to identify differences in spring and winter oat</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chawade, Aakash ; Lindén, Pernilla ; Bräutigam, Marcus ; Jonsson, Rickard ; Jonsson, Anders ; Moritz, Thomas ; Olsson, Olof</creator><contributor>Niedz, Randall P.</contributor><creatorcontrib>Chawade, Aakash ; Lindén, Pernilla ; Bräutigam, Marcus ; Jonsson, Rickard ; Jonsson, Anders ; Moritz, Thomas ; Olsson, Olof ; Sveriges lantbruksuniversitet ; Niedz, Randall P.</creatorcontrib><description>Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0029792</identifier><identifier>PMID: 22253782</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acclimation ; Acclimatization ; Acclimatization - genetics ; Agricultural land ; Agriculture ; Agronomy ; Amino acids ; Analysis ; Analysis of Variance ; Avena - genetics ; Avena sativa ; Bioindicators ; Bioinformatics and Systems Biology ; Bioinformatik och systembiologi ; Biological Sciences ; Biologiska vetenskaper ; Biology ; Biomarkers ; Biosynthesis ; Breeding ; Chromatography ; Cold ; Cold acclimation ; Cold tolerance ; Cultivars ; Data analysis ; Design of experiments ; Developmental Biology ; Discriminant Analysis ; Electrolytes ; Environmental science ; Flowering ; Flowers - genetics ; Freezing ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Gene sequencing ; Genes ; Identification ; Laboratory tests ; Least-Squares Analysis ; Lignin ; Mass spectrometry ; Metabolic Networks and Pathways - genetics ; Metabolites ; Metabolome - genetics ; Models, Biological ; mRNA ; Mutation ; Oats ; Organic acids ; Phase transitions ; Physiology ; Plant breeding ; Plant sciences ; Plant tissues ; Principal Component Analysis ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Scientific imaging ; Seasons ; Signal transduction ; Spring ; Sucrose - metabolism ; Sugar ; Utvecklingsbiologi ; Winter</subject><ispartof>PloS one, 2012-01, Vol.7 (1), p.e29792-e29792</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Chawade et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Chawade et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767t-1b0ab649c95b7cbcef120e2c6517ddde1518763f96824cc5f909e1f965f91d8d3</citedby><cites>FETCH-LOGICAL-c767t-1b0ab649c95b7cbcef120e2c6517ddde1518763f96824cc5f909e1f965f91d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253801/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253801/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22253782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/273459$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/42608$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Niedz, Randall P.</contributor><creatorcontrib>Chawade, Aakash</creatorcontrib><creatorcontrib>Lindén, Pernilla</creatorcontrib><creatorcontrib>Bräutigam, Marcus</creatorcontrib><creatorcontrib>Jonsson, Rickard</creatorcontrib><creatorcontrib>Jonsson, Anders</creatorcontrib><creatorcontrib>Moritz, Thomas</creatorcontrib><creatorcontrib>Olsson, Olof</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Development of a model system to identify differences in spring and winter oat</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Acclimatization - genetics</subject><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Agronomy</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Analysis of Variance</subject><subject>Avena - genetics</subject><subject>Avena sativa</subject><subject>Bioindicators</subject><subject>Bioinformatics and Systems Biology</subject><subject>Bioinformatik och systembiologi</subject><subject>Biological Sciences</subject><subject>Biologiska vetenskaper</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biosynthesis</subject><subject>Breeding</subject><subject>Chromatography</subject><subject>Cold</subject><subject>Cold acclimation</subject><subject>Cold tolerance</subject><subject>Cultivars</subject><subject>Data analysis</subject><subject>Design of experiments</subject><subject>Developmental Biology</subject><subject>Discriminant Analysis</subject><subject>Electrolytes</subject><subject>Environmental science</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Freezing</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Identification</subject><subject>Laboratory tests</subject><subject>Least-Squares Analysis</subject><subject>Lignin</subject><subject>Mass spectrometry</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolites</subject><subject>Metabolome - genetics</subject><subject>Models, Biological</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Oats</subject><subject>Organic acids</subject><subject>Phase transitions</subject><subject>Physiology</subject><subject>Plant breeding</subject><subject>Plant sciences</subject><subject>Plant tissues</subject><subject>Principal Component Analysis</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Scientific imaging</subject><subject>Seasons</subject><subject>Signal transduction</subject><subject>Spring</subject><subject>Sucrose - metabolism</subject><subject>Sugar</subject><subject>Utvecklingsbiologi</subject><subject>Winter</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAUhU1padK0_6C0gkJLFzPVy5K9KYT0NRAa6GsrZOnao8G2HMtOOv--mowTxiWU4oWkq-8c20e6SfKc4CVhkrzb-LFvdb3sfAtLjGkuc_ogOSY5owtBMXt4MD9KnoSwwThlmRCPkyNKacpkRo-Trx_gCmrfNdAOyJdIo8ZbqFHYhgEaNHjkbNxy5RZZV5bQQ2sgINei0PWurZBuLbp27QA98np4mjwqdR3g2TSeJD8_ffxx9mVxfvF5dXZ6vjBSyGFBCqwLwXOTp4U0hYGSUAzUiJRIay2QlGRSsDIXGeXGpGWOcyBxGWfEZpadJC_3vl3tg5qiCIowSrnMmGCRWO0J6_VGxW9tdL9VXjt1U_B9pXQ_OFOD0jEWmlHBASjXKdcMc1mmnErImZZp9FrsvcI1dGMxcwv1WOh-N6gAilOBs3_y1dipWKpucCoZT_PIv5_-ZiwasCYG3ut6JpvvtG6tKn-lWDzGDJNo8GYy6P3lCGFQjQsG6lq34MegciKylOOURvLVX-T94U1UpWM-ri19fK3ZeapTLiUR8bLJSC3voeJjoXEmXsvSxfpM8HYmiMwAv4dKjyGo1fdv_89e_Jqzrw_YNeh6WAdfj4PzbZiDfA-a3ofQQ3mXMcFq11W3aahdV6mpq6LsxeH53Ilu24j9AY8_HRc</recordid><startdate>20120109</startdate><enddate>20120109</enddate><creator>Chawade, Aakash</creator><creator>Lindén, Pernilla</creator><creator>Bräutigam, Marcus</creator><creator>Jonsson, Rickard</creator><creator>Jonsson, Anders</creator><creator>Moritz, Thomas</creator><creator>Olsson, Olof</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>DOA</scope></search><sort><creationdate>20120109</creationdate><title>Development of a model system to identify differences in spring and winter oat</title><author>Chawade, Aakash ; Lindén, Pernilla ; Bräutigam, Marcus ; Jonsson, Rickard ; Jonsson, Anders ; Moritz, Thomas ; Olsson, Olof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-1b0ab649c95b7cbcef120e2c6517ddde1518763f96824cc5f909e1f965f91d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Acclimatization - genetics</topic><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Agronomy</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Analysis of Variance</topic><topic>Avena - genetics</topic><topic>Avena sativa</topic><topic>Bioindicators</topic><topic>Bioinformatics and Systems Biology</topic><topic>Bioinformatik och systembiologi</topic><topic>Biological Sciences</topic><topic>Biologiska vetenskaper</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biosynthesis</topic><topic>Breeding</topic><topic>Chromatography</topic><topic>Cold</topic><topic>Cold acclimation</topic><topic>Cold tolerance</topic><topic>Cultivars</topic><topic>Data analysis</topic><topic>Design of experiments</topic><topic>Developmental Biology</topic><topic>Discriminant Analysis</topic><topic>Electrolytes</topic><topic>Environmental science</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Freezing</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Identification</topic><topic>Laboratory tests</topic><topic>Least-Squares Analysis</topic><topic>Lignin</topic><topic>Mass spectrometry</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolites</topic><topic>Metabolome - genetics</topic><topic>Models, Biological</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Oats</topic><topic>Organic acids</topic><topic>Phase transitions</topic><topic>Physiology</topic><topic>Plant breeding</topic><topic>Plant sciences</topic><topic>Plant tissues</topic><topic>Principal Component Analysis</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Scientific imaging</topic><topic>Seasons</topic><topic>Signal transduction</topic><topic>Spring</topic><topic>Sucrose - metabolism</topic><topic>Sugar</topic><topic>Utvecklingsbiologi</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chawade, Aakash</creatorcontrib><creatorcontrib>Lindén, Pernilla</creatorcontrib><creatorcontrib>Bräutigam, Marcus</creatorcontrib><creatorcontrib>Jonsson, Rickard</creatorcontrib><creatorcontrib>Jonsson, Anders</creatorcontrib><creatorcontrib>Moritz, Thomas</creatorcontrib><creatorcontrib>Olsson, Olof</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chawade, Aakash</au><au>Lindén, Pernilla</au><au>Bräutigam, Marcus</au><au>Jonsson, Rickard</au><au>Jonsson, Anders</au><au>Moritz, Thomas</au><au>Olsson, Olof</au><au>Niedz, Randall P.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a model system to identify differences in spring and winter oat</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-01-09</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>e29792</spage><epage>e29792</epage><pages>e29792-e29792</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22253782</pmid><doi>10.1371/journal.pone.0029792</doi><tpages>e29792</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-01, Vol.7 (1), p.e29792-e29792 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1322478363 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acclimation Acclimatization Acclimatization - genetics Agricultural land Agriculture Agronomy Amino acids Analysis Analysis of Variance Avena - genetics Avena sativa Bioindicators Bioinformatics and Systems Biology Bioinformatik och systembiologi Biological Sciences Biologiska vetenskaper Biology Biomarkers Biosynthesis Breeding Chromatography Cold Cold acclimation Cold tolerance Cultivars Data analysis Design of experiments Developmental Biology Discriminant Analysis Electrolytes Environmental science Flowering Flowers - genetics Freezing Gene expression Gene Expression Profiling Gene Expression Regulation, Plant Gene sequencing Genes Identification Laboratory tests Least-Squares Analysis Lignin Mass spectrometry Metabolic Networks and Pathways - genetics Metabolites Metabolome - genetics Models, Biological mRNA Mutation Oats Organic acids Phase transitions Physiology Plant breeding Plant sciences Plant tissues Principal Component Analysis Proteins Reverse Transcriptase Polymerase Chain Reaction Scientific imaging Seasons Signal transduction Spring Sucrose - metabolism Sugar Utvecklingsbiologi Winter |
title | Development of a model system to identify differences in spring and winter oat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20model%20system%20to%20identify%20differences%20in%20spring%20and%20winter%20oat&rft.jtitle=PloS%20one&rft.au=Chawade,%20Aakash&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2012-01-09&rft.volume=7&rft.issue=1&rft.spage=e29792&rft.epage=e29792&rft.pages=e29792-e29792&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0029792&rft_dat=%3Cgale_plos_%3EA477169797%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322478363&rft_id=info:pmid/22253782&rft_galeid=A477169797&rft_doaj_id=oai_doaj_org_article_a53828264ee24a54a3047f5427e93a75&rfr_iscdi=true |