γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis

γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012, Vol.7 (1), p.e29919-e29919
Hauptverfasser: Vinopal, Stanislav, Cernohorská, Markéta, Sulimenko, Vadym, Sulimenko, Tetyana, Vosecká, Věra, Flemr, Matyáš, Dráberová, Eduarda, Dráber, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e29919
container_issue 1
container_start_page e29919
container_title PloS one
container_volume 7
creator Vinopal, Stanislav
Cernohorská, Markéta
Sulimenko, Vadym
Sulimenko, Tetyana
Vosecká, Věra
Flemr, Matyáš
Dráberová, Eduarda
Dráber, Pavel
description γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity.
doi_str_mv 10.1371/journal.pone.0029919
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1322070974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f2c2d96bd124581b6fc0bf4cba76dc4</doaj_id><sourcerecordid>2932580361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f839a0acf822c4f1811a332ebbbc5e05d7537c78163dd0d580d8cbe2a906d0aa3</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfIIjEglUG-zp24g0SqgpUqsSmXVt-3AwZOfZgJ6D5Lv6Db6qHmVYtYmX73nOOfa5PVb2mZEVZRz9s4pKC9qttDLgiBKSk8kl1SiWDRgBhTx_sT6oXOW8I4awX4nl1AgCMM05Oq5s_v5vrxSx-DDXUYbEe9Yy5nkab4rxvlIMOrh5z7eKvkHC9-IIohVBPcclYo05-V-Nk0i6uMWAe88vq2aB9xlfH9ay6-Xxxff61ufr25fL801VjOfC5GXomNdF26AFsO9CeUs0YoDHGciTcdZx1tuupYM4Rx3viemsQtCTCEa3ZWfX2oLv1MavjRLKiDIB0RHZtQVweEC7qjdqmcdJpp6Ie1d9CTGul0zwW20oMYMFJYRyFlvfUiMESM7TW6E44u9f6eLxtMRM6i2FO2j8SfdwJ43e1jj8VA05aSYvA-6NAij8WzLOaxmzRex2wjFJJygUjXEBBvvsH-X9z7QFV_irnhMP9WyhR-5DcsdQ-JOoYkkJ789DHPekuFewWWW29Hw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322070974</pqid></control><display><type>article</type><title>γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vinopal, Stanislav ; Cernohorská, Markéta ; Sulimenko, Vadym ; Sulimenko, Tetyana ; Vosecká, Věra ; Flemr, Matyáš ; Dráberová, Eduarda ; Dráber, Pavel</creator><contributor>Prigent, Claude</contributor><creatorcontrib>Vinopal, Stanislav ; Cernohorská, Markéta ; Sulimenko, Vadym ; Sulimenko, Tetyana ; Vosecká, Věra ; Flemr, Matyáš ; Dráberová, Eduarda ; Dráber, Pavel ; Prigent, Claude</creatorcontrib><description>γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0029919</identifier><identifier>PMID: 22235350</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological evolution ; Biology ; Blastocysts ; Cell Line, Tumor ; Centrosomes ; Cytoskeleton ; Down-Regulation ; Embryo Implantation ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Evolutionary genetics ; Gene Expression Regulation, Developmental ; Genes ; Humans ; Immunoglobulins ; Intracellular Space - metabolism ; Kinases ; Male ; Mammals ; Metaphase ; Mice ; Mice, Inbred C57BL ; Microtubules ; Microtubules - metabolism ; Mitosis - genetics ; mRNA ; Nucleation ; Phenotypes ; Protein Isoforms - deficiency ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein Transport ; Proteins ; RNA-mediated interference ; Substitutes ; Time Factors ; Tubulin ; Tubulin - deficiency ; Tubulin - genetics ; Tubulin - metabolism</subject><ispartof>PloS one, 2012, Vol.7 (1), p.e29919-e29919</ispartof><rights>2012 Vinopal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Vinopal et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f839a0acf822c4f1811a332ebbbc5e05d7537c78163dd0d580d8cbe2a906d0aa3</citedby><cites>FETCH-LOGICAL-c525t-f839a0acf822c4f1811a332ebbbc5e05d7537c78163dd0d580d8cbe2a906d0aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250491/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250491/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,4022,23865,27922,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22235350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Prigent, Claude</contributor><creatorcontrib>Vinopal, Stanislav</creatorcontrib><creatorcontrib>Cernohorská, Markéta</creatorcontrib><creatorcontrib>Sulimenko, Vadym</creatorcontrib><creatorcontrib>Sulimenko, Tetyana</creatorcontrib><creatorcontrib>Vosecká, Věra</creatorcontrib><creatorcontrib>Flemr, Matyáš</creatorcontrib><creatorcontrib>Dráberová, Eduarda</creatorcontrib><creatorcontrib>Dráber, Pavel</creatorcontrib><title>γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity.</description><subject>Animals</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Blastocysts</subject><subject>Cell Line, Tumor</subject><subject>Centrosomes</subject><subject>Cytoskeleton</subject><subject>Down-Regulation</subject><subject>Embryo Implantation</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Evolutionary genetics</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Intracellular Space - metabolism</subject><subject>Kinases</subject><subject>Male</subject><subject>Mammals</subject><subject>Metaphase</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Mitosis - genetics</subject><subject>mRNA</subject><subject>Nucleation</subject><subject>Phenotypes</subject><subject>Protein Isoforms - deficiency</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>RNA-mediated interference</subject><subject>Substitutes</subject><subject>Time Factors</subject><subject>Tubulin</subject><subject>Tubulin - deficiency</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfIIjEglUG-zp24g0SqgpUqsSmXVt-3AwZOfZgJ6D5Lv6Db6qHmVYtYmX73nOOfa5PVb2mZEVZRz9s4pKC9qttDLgiBKSk8kl1SiWDRgBhTx_sT6oXOW8I4awX4nl1AgCMM05Oq5s_v5vrxSx-DDXUYbEe9Yy5nkab4rxvlIMOrh5z7eKvkHC9-IIohVBPcclYo05-V-Nk0i6uMWAe88vq2aB9xlfH9ay6-Xxxff61ufr25fL801VjOfC5GXomNdF26AFsO9CeUs0YoDHGciTcdZx1tuupYM4Rx3viemsQtCTCEa3ZWfX2oLv1MavjRLKiDIB0RHZtQVweEC7qjdqmcdJpp6Ie1d9CTGul0zwW20oMYMFJYRyFlvfUiMESM7TW6E44u9f6eLxtMRM6i2FO2j8SfdwJ43e1jj8VA05aSYvA-6NAij8WzLOaxmzRex2wjFJJygUjXEBBvvsH-X9z7QFV_irnhMP9WyhR-5DcsdQ-JOoYkkJ789DHPekuFewWWW29Hw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Vinopal, Stanislav</creator><creator>Cernohorská, Markéta</creator><creator>Sulimenko, Vadym</creator><creator>Sulimenko, Tetyana</creator><creator>Vosecká, Věra</creator><creator>Flemr, Matyáš</creator><creator>Dráberová, Eduarda</creator><creator>Dráber, Pavel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2012</creationdate><title>γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis</title><author>Vinopal, Stanislav ; Cernohorská, Markéta ; Sulimenko, Vadym ; Sulimenko, Tetyana ; Vosecká, Věra ; Flemr, Matyáš ; Dráberová, Eduarda ; Dráber, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f839a0acf822c4f1811a332ebbbc5e05d7537c78163dd0d580d8cbe2a906d0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Blastocysts</topic><topic>Cell Line, Tumor</topic><topic>Centrosomes</topic><topic>Cytoskeleton</topic><topic>Down-Regulation</topic><topic>Embryo Implantation</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Evolutionary genetics</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Intracellular Space - metabolism</topic><topic>Kinases</topic><topic>Male</topic><topic>Mammals</topic><topic>Metaphase</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Mitosis - genetics</topic><topic>mRNA</topic><topic>Nucleation</topic><topic>Phenotypes</topic><topic>Protein Isoforms - deficiency</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>RNA-mediated interference</topic><topic>Substitutes</topic><topic>Time Factors</topic><topic>Tubulin</topic><topic>Tubulin - deficiency</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinopal, Stanislav</creatorcontrib><creatorcontrib>Cernohorská, Markéta</creatorcontrib><creatorcontrib>Sulimenko, Vadym</creatorcontrib><creatorcontrib>Sulimenko, Tetyana</creatorcontrib><creatorcontrib>Vosecká, Věra</creatorcontrib><creatorcontrib>Flemr, Matyáš</creatorcontrib><creatorcontrib>Dráberová, Eduarda</creatorcontrib><creatorcontrib>Dráber, Pavel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinopal, Stanislav</au><au>Cernohorská, Markéta</au><au>Sulimenko, Vadym</au><au>Sulimenko, Tetyana</au><au>Vosecká, Věra</au><au>Flemr, Matyáš</au><au>Dráberová, Eduarda</au><au>Dráber, Pavel</au><au>Prigent, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>e29919</spage><epage>e29919</epage><pages>e29919-e29919</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22235350</pmid><doi>10.1371/journal.pone.0029919</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012, Vol.7 (1), p.e29919-e29919
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1322070974
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Biological evolution
Biology
Blastocysts
Cell Line, Tumor
Centrosomes
Cytoskeleton
Down-Regulation
Embryo Implantation
Embryogenesis
Embryonic Development - genetics
Embryonic growth stage
Evolutionary genetics
Gene Expression Regulation, Developmental
Genes
Humans
Immunoglobulins
Intracellular Space - metabolism
Kinases
Male
Mammals
Metaphase
Mice
Mice, Inbred C57BL
Microtubules
Microtubules - metabolism
Mitosis - genetics
mRNA
Nucleation
Phenotypes
Protein Isoforms - deficiency
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein Transport
Proteins
RNA-mediated interference
Substitutes
Time Factors
Tubulin
Tubulin - deficiency
Tubulin - genetics
Tubulin - metabolism
title γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3-Tubulin%202%20nucleates%20microtubules%20and%20is%20downregulated%20in%20mouse%20early%20embryogenesis&rft.jtitle=PloS%20one&rft.au=Vinopal,%20Stanislav&rft.date=2012&rft.volume=7&rft.issue=1&rft.spage=e29919&rft.epage=e29919&rft.pages=e29919-e29919&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0029919&rft_dat=%3Cproquest_plos_%3E2932580361%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322070974&rft_id=info:pmid/22235350&rft_doaj_id=oai_doaj_org_article_6f2c2d96bd124581b6fc0bf4cba76dc4&rfr_iscdi=true