Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species
The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-06, Vol.6 (6), p.e21553-e21553 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e21553 |
---|---|
container_issue | 6 |
container_start_page | e21553 |
container_title | PloS one |
container_volume | 6 |
creator | Nowick, Katja Fields, Christopher Gernat, Tim Caetano-Anolles, Derek Kholina, Nadezda Stubbs, Lisa |
description | The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF) gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF) binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution. |
doi_str_mv | 10.1371/journal.pone.0021553 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1319241185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476886652</galeid><doaj_id>oai_doaj_org_article_394883d3c5734e92b6150b4a079cfa2d</doaj_id><sourcerecordid>A476886652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-d8a3112fdafc653cf9a818047f35e1c7763a0d17341313614205685d0a6cb4bf3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDgiI4Yy5N0_ogLIuuAwsL3l5Dmp50snSSMWlH12c_uJmZ7jKVfZA-pOT8zv9cck6WPSV4Tpggb6_8EJzq5mvvYI4xJZyze9kxqRidFRSz-wf_R9mjGK8w5qwsiofZESWClQKL4-zPubLuDep8jEi5BjV2A6EFpwFZh9bBrlQP6Ld1emasayGgZIT4DikUrF6iADHlkWjjA4KN74beeoe82XHJ3A6d6n24TsrGQNgqR1RD_xPAobgGbSE-zh4Y1UV4Mp4n2bePH76efZpdXJ4vzk4vZlpw0c-aUjFCqGmU0QVn2lSqJCXOhWEciBaiYAo3qbScMMIKklPMi5I3WBW6zmvDTrLne911qleODYwy0RXNCSl5IhZ7ovHqSu7KD9fSKyt3Fz60UoXe6g4kq_KyZA3TPAWEitYF4bjOFRaVNoo2Sev9GG2oV9BocH1Q3UR0anF2KVu_kYzQIhWWBF6NAsH_GCD2cmWjhq5TDvwQZZm6QhkV27Rf_EPeXdxItSrlb53xKazeasrTXBRlmg1OEzW_g0pfAyur07AZm-4nDq8nDonp4VffqiFGufjy-f_Zy-9T9uUBuwTV9cs4Dlicgvke1CGNcQBz22OC5XZXbroht7six11Jbs8O3-fW6WY52F_D4w9F</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319241185</pqid></control><display><type>article</type><title>Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nowick, Katja ; Fields, Christopher ; Gernat, Tim ; Caetano-Anolles, Derek ; Kholina, Nadezda ; Stubbs, Lisa</creator><contributor>Batzer, Mark A.</contributor><creatorcontrib>Nowick, Katja ; Fields, Christopher ; Gernat, Tim ; Caetano-Anolles, Derek ; Kholina, Nadezda ; Stubbs, Lisa ; Batzer, Mark A.</creatorcontrib><description>The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF) gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF) binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0021553</identifier><identifier>PMID: 21738707</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Binding ; Bioinformatics ; Biological evolution ; Biology ; Chimpanzees ; Conservation ; Deoxyribonucleic acid ; Developmental biology ; Divergence ; DNA ; DNA binding proteins ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Gene expression ; Gene regulation ; Genes ; Genomes ; Genomics ; Humans ; Life sciences ; Macaca mulatta ; Monkeys & apes ; Neurogenesis ; Nucleotide sequence ; Orangutans ; Pan troglodytes ; Phylogenetics ; Pongo pygmaeus ; Positive selection ; Predictions ; Primates ; Primates - genetics ; Protein binding ; Proteins ; Species ; Stem cells ; Studies ; Transcription factors ; Zinc ; Zinc finger proteins ; Zinc Fingers - genetics</subject><ispartof>PloS one, 2011-06, Vol.6 (6), p.e21553-e21553</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Nowick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Nowick et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-d8a3112fdafc653cf9a818047f35e1c7763a0d17341313614205685d0a6cb4bf3</citedby><cites>FETCH-LOGICAL-c757t-d8a3112fdafc653cf9a818047f35e1c7763a0d17341313614205685d0a6cb4bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126818/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126818/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21738707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Batzer, Mark A.</contributor><creatorcontrib>Nowick, Katja</creatorcontrib><creatorcontrib>Fields, Christopher</creatorcontrib><creatorcontrib>Gernat, Tim</creatorcontrib><creatorcontrib>Caetano-Anolles, Derek</creatorcontrib><creatorcontrib>Kholina, Nadezda</creatorcontrib><creatorcontrib>Stubbs, Lisa</creatorcontrib><title>Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF) gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF) binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.</description><subject>Animals</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Chimpanzees</subject><subject>Conservation</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental biology</subject><subject>Divergence</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Life sciences</subject><subject>Macaca mulatta</subject><subject>Monkeys & apes</subject><subject>Neurogenesis</subject><subject>Nucleotide sequence</subject><subject>Orangutans</subject><subject>Pan troglodytes</subject><subject>Phylogenetics</subject><subject>Pongo pygmaeus</subject><subject>Positive selection</subject><subject>Predictions</subject><subject>Primates</subject><subject>Primates - genetics</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Species</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Transcription factors</subject><subject>Zinc</subject><subject>Zinc finger proteins</subject><subject>Zinc Fingers - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDgiI4Yy5N0_ogLIuuAwsL3l5Dmp50snSSMWlH12c_uJmZ7jKVfZA-pOT8zv9cck6WPSV4Tpggb6_8EJzq5mvvYI4xJZyze9kxqRidFRSz-wf_R9mjGK8w5qwsiofZESWClQKL4-zPubLuDep8jEi5BjV2A6EFpwFZh9bBrlQP6Ld1emasayGgZIT4DikUrF6iADHlkWjjA4KN74beeoe82XHJ3A6d6n24TsrGQNgqR1RD_xPAobgGbSE-zh4Y1UV4Mp4n2bePH76efZpdXJ4vzk4vZlpw0c-aUjFCqGmU0QVn2lSqJCXOhWEciBaiYAo3qbScMMIKklPMi5I3WBW6zmvDTrLne911qleODYwy0RXNCSl5IhZ7ovHqSu7KD9fSKyt3Fz60UoXe6g4kq_KyZA3TPAWEitYF4bjOFRaVNoo2Sev9GG2oV9BocH1Q3UR0anF2KVu_kYzQIhWWBF6NAsH_GCD2cmWjhq5TDvwQZZm6QhkV27Rf_EPeXdxItSrlb53xKazeasrTXBRlmg1OEzW_g0pfAyur07AZm-4nDq8nDonp4VffqiFGufjy-f_Zy-9T9uUBuwTV9cs4Dlicgvke1CGNcQBz22OC5XZXbroht7six11Jbs8O3-fW6WY52F_D4w9F</recordid><startdate>20110629</startdate><enddate>20110629</enddate><creator>Nowick, Katja</creator><creator>Fields, Christopher</creator><creator>Gernat, Tim</creator><creator>Caetano-Anolles, Derek</creator><creator>Kholina, Nadezda</creator><creator>Stubbs, Lisa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110629</creationdate><title>Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species</title><author>Nowick, Katja ; Fields, Christopher ; Gernat, Tim ; Caetano-Anolles, Derek ; Kholina, Nadezda ; Stubbs, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-d8a3112fdafc653cf9a818047f35e1c7763a0d17341313614205685d0a6cb4bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Chimpanzees</topic><topic>Conservation</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental biology</topic><topic>Divergence</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Life sciences</topic><topic>Macaca mulatta</topic><topic>Monkeys & apes</topic><topic>Neurogenesis</topic><topic>Nucleotide sequence</topic><topic>Orangutans</topic><topic>Pan troglodytes</topic><topic>Phylogenetics</topic><topic>Pongo pygmaeus</topic><topic>Positive selection</topic><topic>Predictions</topic><topic>Primates</topic><topic>Primates - genetics</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Species</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Transcription factors</topic><topic>Zinc</topic><topic>Zinc finger proteins</topic><topic>Zinc Fingers - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowick, Katja</creatorcontrib><creatorcontrib>Fields, Christopher</creatorcontrib><creatorcontrib>Gernat, Tim</creatorcontrib><creatorcontrib>Caetano-Anolles, Derek</creatorcontrib><creatorcontrib>Kholina, Nadezda</creatorcontrib><creatorcontrib>Stubbs, Lisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowick, Katja</au><au>Fields, Christopher</au><au>Gernat, Tim</au><au>Caetano-Anolles, Derek</au><au>Kholina, Nadezda</au><au>Stubbs, Lisa</au><au>Batzer, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-06-29</date><risdate>2011</risdate><volume>6</volume><issue>6</issue><spage>e21553</spage><epage>e21553</epage><pages>e21553-e21553</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF) gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF) binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21738707</pmid><doi>10.1371/journal.pone.0021553</doi><tpages>e21553</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-06, Vol.6 (6), p.e21553-e21553 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1319241185 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Binding Bioinformatics Biological evolution Biology Chimpanzees Conservation Deoxyribonucleic acid Developmental biology Divergence DNA DNA binding proteins Evolution Evolution, Molecular Evolutionary genetics Gene expression Gene regulation Genes Genomes Genomics Humans Life sciences Macaca mulatta Monkeys & apes Neurogenesis Nucleotide sequence Orangutans Pan troglodytes Phylogenetics Pongo pygmaeus Positive selection Predictions Primates Primates - genetics Protein binding Proteins Species Stem cells Studies Transcription factors Zinc Zinc finger proteins Zinc Fingers - genetics |
title | Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain,%20loss%20and%20divergence%20in%20primate%20zinc-finger%20genes:%20a%20rich%20resource%20for%20evolution%20of%20gene%20regulatory%20differences%20between%20species&rft.jtitle=PloS%20one&rft.au=Nowick,%20Katja&rft.date=2011-06-29&rft.volume=6&rft.issue=6&rft.spage=e21553&rft.epage=e21553&rft.pages=e21553-e21553&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0021553&rft_dat=%3Cgale_plos_%3EA476886652%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319241185&rft_id=info:pmid/21738707&rft_galeid=A476886652&rft_doaj_id=oai_doaj_org_article_394883d3c5734e92b6150b4a079cfa2d&rfr_iscdi=true |