Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse

Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-06, Vol.6 (6), p.e21740-e21740
Hauptverfasser: Ping, Jihui, Keleta, Liya, Forbes, Nicole E, Dankar, Samar, Stecho, William, Tyler, Shaun, Zhou, Yan, Babiuk, Lorne, Weingartl, Hana, Halpin, Rebecca A, Boyne, Alex, Bera, Jayati, Hostetler, Jessicah, Fedorova, Nadia B, Proudfoot, Katie, Katzel, Dan A, Stockwell, Tim B, Ghedin, Elodie, Spiro, David J, Brown, Earl G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e21740
container_issue 6
container_start_page e21740
container_title PloS one
container_volume 6
creator Ping, Jihui
Keleta, Liya
Forbes, Nicole E
Dankar, Samar
Stecho, William
Tyler, Shaun
Zhou, Yan
Babiuk, Lorne
Weingartl, Hana
Halpin, Rebecca A
Boyne, Alex
Bera, Jayati
Hostetler, Jessicah
Fedorova, Nadia B
Proudfoot, Katie
Katzel, Dan A
Stockwell, Tim B
Ghedin, Elodie
Spiro, David J
Brown, Earl G
description Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.
doi_str_mv 10.1371/journal.pone.0021740
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1319238037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476886478</galeid><doaj_id>oai_doaj_org_article_88f6ee287fae477495f74768ad678e77</doaj_id><sourcerecordid>A476886478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-761ad73391426a3f06330bc1f14a5d6d57b3709910c5b17dd658b4aa792be6823</originalsourceid><addsrcrecordid>eNqNk1-L1DAUxYso7jr6DUQDguLDjEnTJumLMCy6Diws-O813La3Mx3apCbpsPrpzex0lxnZB-lDy-nvniQn9ybJS0YXjEv2YWtHZ6BbDNbggtKUyYw-Ss5ZwdO5SCl_fPR9ljzzfktpzpUQT5OzCHMlFT9Pbi7R2L6tCJiaDM4GbA3xwY1VGB10pIfBE9sQqGEI7Q4J7mw3htaavboZezCkNU03ovkDZEl2rRs9CTaKlUPwWN9KHZoKo0bCBklvR4_PkycNdB5fTO9Z8uPzp-8XX-ZX15eri-XVvJK5DHMpGNSS84JlqQDeUME5LSvWsAzyWtS5LLmkRcFolZdM1rXIVZkByCItUaiUz5LXB9-hs15PoXnNOCtSriiXkVgdiNrCVg-u7cH91hZafStYt9bgQlt1qJVqBGKqZAOYSZkVeSMzKRTUQiqUe6-P02pj2WNdoQkxxRPT0z-m3ei13WnOUkVVHg3eTQbO_hrRB923vsKuA4MxNq1iKnHfUkTyzT_kw4ebqDXE_cebsnHZau-pl_udK5HFPpgliweo-NQYeyM2WNNG_aTg_UlBZALehDWM3uvVt6__z17_PGXfHrEbhC5s_NRw_hTMDmDlrPcOm_uMGdX7-bhLQ-_nQ0_zEcteHd_PfdHdQPC_w_cLcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319238037</pqid></control><display><type>article</type><title>Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ping, Jihui ; Keleta, Liya ; Forbes, Nicole E ; Dankar, Samar ; Stecho, William ; Tyler, Shaun ; Zhou, Yan ; Babiuk, Lorne ; Weingartl, Hana ; Halpin, Rebecca A ; Boyne, Alex ; Bera, Jayati ; Hostetler, Jessicah ; Fedorova, Nadia B ; Proudfoot, Katie ; Katzel, Dan A ; Stockwell, Tim B ; Ghedin, Elodie ; Spiro, David J ; Brown, Earl G</creator><contributor>Zhang, Luwen</contributor><creatorcontrib>Ping, Jihui ; Keleta, Liya ; Forbes, Nicole E ; Dankar, Samar ; Stecho, William ; Tyler, Shaun ; Zhou, Yan ; Babiuk, Lorne ; Weingartl, Hana ; Halpin, Rebecca A ; Boyne, Alex ; Bera, Jayati ; Hostetler, Jessicah ; Fedorova, Nadia B ; Proudfoot, Katie ; Katzel, Dan A ; Stockwell, Tim B ; Ghedin, Elodie ; Spiro, David J ; Brown, Earl G ; Zhang, Luwen</creatorcontrib><description>Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with &gt;300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0021740</identifier><identifier>PMID: 21738783</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptive control ; Analysis ; Animal experimentation ; Animals ; Binding sites ; Biochemistry ; Biological response modifiers ; Biology ; Cell Line ; DNA-directed RNA polymerase ; Dogs ; Drug resistance ; Endonuclease ; Epistasis ; Evolution ; Evolution &amp; development ; Evolutionary biology ; Gene expression ; Gene mapping ; Genes ; Genetic research ; Genome, Viral - genetics ; Genomes ; Genomic analysis ; Genomics ; Health aspects ; Hemagglutinins ; Hepatitis ; Host range ; Human evolution ; Humans ; Immunology ; Infections ; Infectious diseases ; Influenza ; Influenza A ; Influenza A virus - genetics ; Influenza A virus - metabolism ; Interferon ; Medical research ; Medicine ; Mice ; Molecular biology ; Mutants ; Mutation ; Natural selection ; Pathogenesis ; Polyadenylation ; Protein binding ; Proteins ; Replication ; Ribonucleic acid ; RNA ; RNA polymerase ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Virology ; Virulence ; Virulence (Microbiology) ; Virulence - genetics ; Virus replication ; Viruses</subject><ispartof>PloS one, 2011-06, Vol.6 (6), p.e21740-e21740</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-761ad73391426a3f06330bc1f14a5d6d57b3709910c5b17dd658b4aa792be6823</citedby><cites>FETCH-LOGICAL-c757t-761ad73391426a3f06330bc1f14a5d6d57b3709910c5b17dd658b4aa792be6823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128085/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128085/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21738783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Luwen</contributor><creatorcontrib>Ping, Jihui</creatorcontrib><creatorcontrib>Keleta, Liya</creatorcontrib><creatorcontrib>Forbes, Nicole E</creatorcontrib><creatorcontrib>Dankar, Samar</creatorcontrib><creatorcontrib>Stecho, William</creatorcontrib><creatorcontrib>Tyler, Shaun</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Babiuk, Lorne</creatorcontrib><creatorcontrib>Weingartl, Hana</creatorcontrib><creatorcontrib>Halpin, Rebecca A</creatorcontrib><creatorcontrib>Boyne, Alex</creatorcontrib><creatorcontrib>Bera, Jayati</creatorcontrib><creatorcontrib>Hostetler, Jessicah</creatorcontrib><creatorcontrib>Fedorova, Nadia B</creatorcontrib><creatorcontrib>Proudfoot, Katie</creatorcontrib><creatorcontrib>Katzel, Dan A</creatorcontrib><creatorcontrib>Stockwell, Tim B</creatorcontrib><creatorcontrib>Ghedin, Elodie</creatorcontrib><creatorcontrib>Spiro, David J</creatorcontrib><creatorcontrib>Brown, Earl G</creatorcontrib><title>Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with &gt;300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.</description><subject>Adaptation</subject><subject>Adaptive control</subject><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological response modifiers</subject><subject>Biology</subject><subject>Cell Line</subject><subject>DNA-directed RNA polymerase</subject><subject>Dogs</subject><subject>Drug resistance</subject><subject>Endonuclease</subject><subject>Epistasis</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolutionary biology</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Hemagglutinins</subject><subject>Hepatitis</subject><subject>Host range</subject><subject>Human evolution</subject><subject>Humans</subject><subject>Immunology</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A virus - genetics</subject><subject>Influenza A virus - metabolism</subject><subject>Interferon</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Natural selection</subject><subject>Pathogenesis</subject><subject>Polyadenylation</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Virology</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Virulence - genetics</subject><subject>Virus replication</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1-L1DAUxYso7jr6DUQDguLDjEnTJumLMCy6Diws-O813La3Mx3apCbpsPrpzex0lxnZB-lDy-nvniQn9ybJS0YXjEv2YWtHZ6BbDNbggtKUyYw-Ss5ZwdO5SCl_fPR9ljzzfktpzpUQT5OzCHMlFT9Pbi7R2L6tCJiaDM4GbA3xwY1VGB10pIfBE9sQqGEI7Q4J7mw3htaavboZezCkNU03ovkDZEl2rRs9CTaKlUPwWN9KHZoKo0bCBklvR4_PkycNdB5fTO9Z8uPzp-8XX-ZX15eri-XVvJK5DHMpGNSS84JlqQDeUME5LSvWsAzyWtS5LLmkRcFolZdM1rXIVZkByCItUaiUz5LXB9-hs15PoXnNOCtSriiXkVgdiNrCVg-u7cH91hZafStYt9bgQlt1qJVqBGKqZAOYSZkVeSMzKRTUQiqUe6-P02pj2WNdoQkxxRPT0z-m3ei13WnOUkVVHg3eTQbO_hrRB923vsKuA4MxNq1iKnHfUkTyzT_kw4ebqDXE_cebsnHZau-pl_udK5HFPpgliweo-NQYeyM2WNNG_aTg_UlBZALehDWM3uvVt6__z17_PGXfHrEbhC5s_NRw_hTMDmDlrPcOm_uMGdX7-bhLQ-_nQ0_zEcteHd_PfdHdQPC_w_cLcQ</recordid><startdate>20110630</startdate><enddate>20110630</enddate><creator>Ping, Jihui</creator><creator>Keleta, Liya</creator><creator>Forbes, Nicole E</creator><creator>Dankar, Samar</creator><creator>Stecho, William</creator><creator>Tyler, Shaun</creator><creator>Zhou, Yan</creator><creator>Babiuk, Lorne</creator><creator>Weingartl, Hana</creator><creator>Halpin, Rebecca A</creator><creator>Boyne, Alex</creator><creator>Bera, Jayati</creator><creator>Hostetler, Jessicah</creator><creator>Fedorova, Nadia B</creator><creator>Proudfoot, Katie</creator><creator>Katzel, Dan A</creator><creator>Stockwell, Tim B</creator><creator>Ghedin, Elodie</creator><creator>Spiro, David J</creator><creator>Brown, Earl G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110630</creationdate><title>Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse</title><author>Ping, Jihui ; Keleta, Liya ; Forbes, Nicole E ; Dankar, Samar ; Stecho, William ; Tyler, Shaun ; Zhou, Yan ; Babiuk, Lorne ; Weingartl, Hana ; Halpin, Rebecca A ; Boyne, Alex ; Bera, Jayati ; Hostetler, Jessicah ; Fedorova, Nadia B ; Proudfoot, Katie ; Katzel, Dan A ; Stockwell, Tim B ; Ghedin, Elodie ; Spiro, David J ; Brown, Earl G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-761ad73391426a3f06330bc1f14a5d6d57b3709910c5b17dd658b4aa792be6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Adaptive control</topic><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological response modifiers</topic><topic>Biology</topic><topic>Cell Line</topic><topic>DNA-directed RNA polymerase</topic><topic>Dogs</topic><topic>Drug resistance</topic><topic>Endonuclease</topic><topic>Epistasis</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolutionary biology</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Hemagglutinins</topic><topic>Hepatitis</topic><topic>Host range</topic><topic>Human evolution</topic><topic>Humans</topic><topic>Immunology</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A virus - genetics</topic><topic>Influenza A virus - metabolism</topic><topic>Interferon</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Natural selection</topic><topic>Pathogenesis</topic><topic>Polyadenylation</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Virology</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Virulence - genetics</topic><topic>Virus replication</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, Jihui</creatorcontrib><creatorcontrib>Keleta, Liya</creatorcontrib><creatorcontrib>Forbes, Nicole E</creatorcontrib><creatorcontrib>Dankar, Samar</creatorcontrib><creatorcontrib>Stecho, William</creatorcontrib><creatorcontrib>Tyler, Shaun</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Babiuk, Lorne</creatorcontrib><creatorcontrib>Weingartl, Hana</creatorcontrib><creatorcontrib>Halpin, Rebecca A</creatorcontrib><creatorcontrib>Boyne, Alex</creatorcontrib><creatorcontrib>Bera, Jayati</creatorcontrib><creatorcontrib>Hostetler, Jessicah</creatorcontrib><creatorcontrib>Fedorova, Nadia B</creatorcontrib><creatorcontrib>Proudfoot, Katie</creatorcontrib><creatorcontrib>Katzel, Dan A</creatorcontrib><creatorcontrib>Stockwell, Tim B</creatorcontrib><creatorcontrib>Ghedin, Elodie</creatorcontrib><creatorcontrib>Spiro, David J</creatorcontrib><creatorcontrib>Brown, Earl G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, Jihui</au><au>Keleta, Liya</au><au>Forbes, Nicole E</au><au>Dankar, Samar</au><au>Stecho, William</au><au>Tyler, Shaun</au><au>Zhou, Yan</au><au>Babiuk, Lorne</au><au>Weingartl, Hana</au><au>Halpin, Rebecca A</au><au>Boyne, Alex</au><au>Bera, Jayati</au><au>Hostetler, Jessicah</au><au>Fedorova, Nadia B</au><au>Proudfoot, Katie</au><au>Katzel, Dan A</au><au>Stockwell, Tim B</au><au>Ghedin, Elodie</au><au>Spiro, David J</au><au>Brown, Earl G</au><au>Zhang, Luwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-06-30</date><risdate>2011</risdate><volume>6</volume><issue>6</issue><spage>e21740</spage><epage>e21740</epage><pages>e21740-e21740</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with &gt;300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21738783</pmid><doi>10.1371/journal.pone.0021740</doi><tpages>e21740</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-06, Vol.6 (6), p.e21740-e21740
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1319238037
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adaptation
Adaptive control
Analysis
Animal experimentation
Animals
Binding sites
Biochemistry
Biological response modifiers
Biology
Cell Line
DNA-directed RNA polymerase
Dogs
Drug resistance
Endonuclease
Epistasis
Evolution
Evolution & development
Evolutionary biology
Gene expression
Gene mapping
Genes
Genetic research
Genome, Viral - genetics
Genomes
Genomic analysis
Genomics
Health aspects
Hemagglutinins
Hepatitis
Host range
Human evolution
Humans
Immunology
Infections
Infectious diseases
Influenza
Influenza A
Influenza A virus - genetics
Influenza A virus - metabolism
Interferon
Medical research
Medicine
Mice
Molecular biology
Mutants
Mutation
Natural selection
Pathogenesis
Polyadenylation
Protein binding
Proteins
Replication
Ribonucleic acid
RNA
RNA polymerase
Viral Proteins - genetics
Viral Proteins - metabolism
Virology
Virulence
Virulence (Microbiology)
Virulence - genetics
Virus replication
Viruses
title Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20and%20protein%20structural%20maps%20of%20adaptive%20evolution%20of%20human%20influenza%20A%20virus%20to%20increased%20virulence%20in%20the%20mouse&rft.jtitle=PloS%20one&rft.au=Ping,%20Jihui&rft.date=2011-06-30&rft.volume=6&rft.issue=6&rft.spage=e21740&rft.epage=e21740&rft.pages=e21740-e21740&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0021740&rft_dat=%3Cgale_plos_%3EA476886478%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319238037&rft_id=info:pmid/21738783&rft_galeid=A476886478&rft_doaj_id=oai_doaj_org_article_88f6ee287fae477495f74768ad678e77&rfr_iscdi=true