Epistasis: Obstacle or Advantage for Mapping Complex Traits?
Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologica...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-08, Vol.5 (8), p.e12264-e12264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e12264 |
---|---|
container_issue | 8 |
container_start_page | e12264 |
container_title | PloS one |
container_volume | 5 |
creator | Verhoeven, K.J.F Casella, G McIntyre, L.M |
description | Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic. |
doi_str_mv | 10.1371/journal.pone.0012264 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1318937242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473873520</galeid><doaj_id>oai_doaj_org_article_9f05ee25a8e640dfa8f4c748e46c8e2e</doaj_id><sourcerecordid>A473873520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c786t-40ce6386c13bf90a377c92d596a098bebe23f8acadca4c827cf16e7890d3c4fe3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwD_iohATiosWxk9iZEKiaBlQqTILBrXXiHGeuUjvYyTb-Pc7aTSuaEFf-et73-Bz7JMnTlMxSxtO3Kzd4C-2scxZnhKSUFtm9ZD8tGZ0WlLD7t-Z7yaMQVoTkTBTFw2SPElHkhPH95N1xZ0IPwYTDyUkVZ6rFifOTeX0OtocGJzquvkDXGdtMjty6a_FycurB9OHD4-SBhjbgk-14kPz4eHx69Hm6PPm0OJovp4qLop9mRGERI6uUVbokwDhXJa3zsgBSigorpEwLUFAryJSgXOm0QC5KUjOVaWQHyYuNb9e6ILeJB5myVJSM04xGYrEhagcr2XmzBv9bOjDyasP5RoLvTUxOlprkiDQHgUVGag1CZ4pnArNCCaRjtMON10VM38a00UoLXplwZdiayo_mF4OXth2HbqiCZKXIRBrF77dXHao11gpt76HdudHuiTVnsnHnkpZUcJpHg9dbA-9-DRh6uTZBYduCRTcEyfM8jVUlI_nyL_LuymypBmLyxmoXw6rRU84zzgRnefwgB8nsDmp8ElwbFX-YNnF_R_BmRxCZHi_7BoYQ5OL7t_9nT37usq9usWcIbX8WXDv0xtmwC2YbUHkXgkd9U-OUyLFBrqshxwaR2waJsue33-dGdN0REXi2ATQ4CY2Pr_51SaOa0JxS9o9zUuY8Z38AngwdGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318937242</pqid></control><display><type>article</type><title>Epistasis: Obstacle or Advantage for Mapping Complex Traits?</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Verhoeven, K.J.F ; Casella, G ; McIntyre, L.M</creator><contributor>Bader, Joel S.</contributor><creatorcontrib>Verhoeven, K.J.F ; Casella, G ; McIntyre, L.M ; Bader, Joel S.</creatorcontrib><description>Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0012264</identifier><identifier>PMID: 20865037</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; arabidopsis-thaliana ; Behavioral sciences ; Computer simulation ; Drosophila melanogaster ; Epistasis ; Epistasis, Genetic ; flanking markers ; Gene frequency ; Gene loci ; Gene mapping ; Genealogy ; genetic architecture ; Genetics ; Genetics and Genomics/Complex Traits ; Genetics and Genomics/Disease Models ; Genetics and Genomics/Medical Genetics ; Genetics and Genomics/Population Genetics ; genome-wide association ; Genomes ; Genomics ; Genotype & phenotype ; Haplotypes ; high-resolution ; Humans ; Hypotheses ; Hypothesis testing ; Insects ; linkage disequilibrium ; Loci ; Markov analysis ; model selection ; Models, Genetic ; Models, Statistical ; multiple loci ; Population ; Quantitative Trait Loci ; quantitative traits ; Simulation ; snp discovery ; Studies ; Trends</subject><ispartof>PloS one, 2010-08, Vol.5 (8), p.e12264-e12264</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Verhoeven et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Verhoeven et al. 2010</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c786t-40ce6386c13bf90a377c92d596a098bebe23f8acadca4c827cf16e7890d3c4fe3</citedby><cites>FETCH-LOGICAL-c786t-40ce6386c13bf90a377c92d596a098bebe23f8acadca4c827cf16e7890d3c4fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20865037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bader, Joel S.</contributor><creatorcontrib>Verhoeven, K.J.F</creatorcontrib><creatorcontrib>Casella, G</creatorcontrib><creatorcontrib>McIntyre, L.M</creatorcontrib><title>Epistasis: Obstacle or Advantage for Mapping Complex Traits?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic.</description><subject>Analysis</subject><subject>Animals</subject><subject>arabidopsis-thaliana</subject><subject>Behavioral sciences</subject><subject>Computer simulation</subject><subject>Drosophila melanogaster</subject><subject>Epistasis</subject><subject>Epistasis, Genetic</subject><subject>flanking markers</subject><subject>Gene frequency</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genealogy</subject><subject>genetic architecture</subject><subject>Genetics</subject><subject>Genetics and Genomics/Complex Traits</subject><subject>Genetics and Genomics/Disease Models</subject><subject>Genetics and Genomics/Medical Genetics</subject><subject>Genetics and Genomics/Population Genetics</subject><subject>genome-wide association</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Haplotypes</subject><subject>high-resolution</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Insects</subject><subject>linkage disequilibrium</subject><subject>Loci</subject><subject>Markov analysis</subject><subject>model selection</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>multiple loci</subject><subject>Population</subject><subject>Quantitative Trait Loci</subject><subject>quantitative traits</subject><subject>Simulation</subject><subject>snp discovery</subject><subject>Studies</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwD_iohATiosWxk9iZEKiaBlQqTILBrXXiHGeuUjvYyTb-Pc7aTSuaEFf-et73-Bz7JMnTlMxSxtO3Kzd4C-2scxZnhKSUFtm9ZD8tGZ0WlLD7t-Z7yaMQVoTkTBTFw2SPElHkhPH95N1xZ0IPwYTDyUkVZ6rFifOTeX0OtocGJzquvkDXGdtMjty6a_FycurB9OHD4-SBhjbgk-14kPz4eHx69Hm6PPm0OJovp4qLop9mRGERI6uUVbokwDhXJa3zsgBSigorpEwLUFAryJSgXOm0QC5KUjOVaWQHyYuNb9e6ILeJB5myVJSM04xGYrEhagcr2XmzBv9bOjDyasP5RoLvTUxOlprkiDQHgUVGag1CZ4pnArNCCaRjtMON10VM38a00UoLXplwZdiayo_mF4OXth2HbqiCZKXIRBrF77dXHao11gpt76HdudHuiTVnsnHnkpZUcJpHg9dbA-9-DRh6uTZBYduCRTcEyfM8jVUlI_nyL_LuymypBmLyxmoXw6rRU84zzgRnefwgB8nsDmp8ElwbFX-YNnF_R_BmRxCZHi_7BoYQ5OL7t_9nT37usq9usWcIbX8WXDv0xtmwC2YbUHkXgkd9U-OUyLFBrqshxwaR2waJsue33-dGdN0REXi2ATQ4CY2Pr_51SaOa0JxS9o9zUuY8Z38AngwdGA</recordid><startdate>20100826</startdate><enddate>20100826</enddate><creator>Verhoeven, K.J.F</creator><creator>Casella, G</creator><creator>McIntyre, L.M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20100826</creationdate><title>Epistasis: Obstacle or Advantage for Mapping Complex Traits?</title><author>Verhoeven, K.J.F ; Casella, G ; McIntyre, L.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c786t-40ce6386c13bf90a377c92d596a098bebe23f8acadca4c827cf16e7890d3c4fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>arabidopsis-thaliana</topic><topic>Behavioral sciences</topic><topic>Computer simulation</topic><topic>Drosophila melanogaster</topic><topic>Epistasis</topic><topic>Epistasis, Genetic</topic><topic>flanking markers</topic><topic>Gene frequency</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genealogy</topic><topic>genetic architecture</topic><topic>Genetics</topic><topic>Genetics and Genomics/Complex Traits</topic><topic>Genetics and Genomics/Disease Models</topic><topic>Genetics and Genomics/Medical Genetics</topic><topic>Genetics and Genomics/Population Genetics</topic><topic>genome-wide association</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Haplotypes</topic><topic>high-resolution</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Insects</topic><topic>linkage disequilibrium</topic><topic>Loci</topic><topic>Markov analysis</topic><topic>model selection</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>multiple loci</topic><topic>Population</topic><topic>Quantitative Trait Loci</topic><topic>quantitative traits</topic><topic>Simulation</topic><topic>snp discovery</topic><topic>Studies</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verhoeven, K.J.F</creatorcontrib><creatorcontrib>Casella, G</creatorcontrib><creatorcontrib>McIntyre, L.M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verhoeven, K.J.F</au><au>Casella, G</au><au>McIntyre, L.M</au><au>Bader, Joel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epistasis: Obstacle or Advantage for Mapping Complex Traits?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-08-26</date><risdate>2010</risdate><volume>5</volume><issue>8</issue><spage>e12264</spage><epage>e12264</epage><pages>e12264-e12264</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20865037</pmid><doi>10.1371/journal.pone.0012264</doi><tpages>e12264</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-08, Vol.5 (8), p.e12264-e12264 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1318937242 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Animals arabidopsis-thaliana Behavioral sciences Computer simulation Drosophila melanogaster Epistasis Epistasis, Genetic flanking markers Gene frequency Gene loci Gene mapping Genealogy genetic architecture Genetics Genetics and Genomics/Complex Traits Genetics and Genomics/Disease Models Genetics and Genomics/Medical Genetics Genetics and Genomics/Population Genetics genome-wide association Genomes Genomics Genotype & phenotype Haplotypes high-resolution Humans Hypotheses Hypothesis testing Insects linkage disequilibrium Loci Markov analysis model selection Models, Genetic Models, Statistical multiple loci Population Quantitative Trait Loci quantitative traits Simulation snp discovery Studies Trends |
title | Epistasis: Obstacle or Advantage for Mapping Complex Traits? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epistasis:%20Obstacle%20or%20Advantage%20for%20Mapping%20Complex%20Traits?&rft.jtitle=PloS%20one&rft.au=Verhoeven,%20K.J.F&rft.date=2010-08-26&rft.volume=5&rft.issue=8&rft.spage=e12264&rft.epage=e12264&rft.pages=e12264-e12264&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0012264&rft_dat=%3Cgale_plos_%3EA473873520%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318937242&rft_id=info:pmid/20865037&rft_galeid=A473873520&rft_doaj_id=oai_doaj_org_article_9f05ee25a8e640dfa8f4c748e46c8e2e&rfr_iscdi=true |