Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices

Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-12, Vol.6 (12), p.e29698
Hauptverfasser: Rieg, Annette D, Rossaint, Rolf, Uhlig, Stefan, Martin, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e29698
container_title PloS one
container_volume 6
creator Rieg, Annette D
Rossaint, Rolf
Uhlig, Stefan
Martin, Christian
description Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins. Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins. Pulmonary veins responded stronger than arteries to α(1)-agonists (contraction) and β(2)-agonists (relaxation). Notably, inhibition of β(2)-adrenoceptors unmasked the α(1)-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V(1a) and AT(1) receptors, respectively, without affecting pulmonary arteries. Vasopressin and (nor)epinephrine in combination with β(2)-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT(1) receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α(1)-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not.
doi_str_mv 10.1371/journal.pone.0029698
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1318799662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476858151</galeid><doaj_id>oai_doaj_org_article_438bac2ea0ae497fa2ac0e98348dbe99</doaj_id><sourcerecordid>A476858151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-db971c05c1c308e253e05653baf13b74dabd02ab8270ab5d25ce95572c3cab913</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QDguDFjPlo2uZGWAY_BhYW_LoNp-lpJ0OnGZN00H9vxukuU1CQXCQkz3mT8-bNsueMLpko2dutG_0A_XLvBlxSylWhqgfZJVOCLwpOxcOz9UX2JIQtpVJURfE4u-Ccs0LkxWVWr8A31h0gmLEHT6DDIQYCbYsmkrhBEpM-cS3Zj_3ODeB_EfARvcVEDQ05oB0CsQPZezQ2WDcszBhJPw4dCb01GJ5mj1roAz6b5qvs24f3X1efFje3H9er65uFKWUZF02tSmaoNMwIWiGXAqkspKihZaIu8wbqhnKoK15SqGXDpUElZcmNMFArJq6ylyfdfe-CnuwJmglWlUoVBU_E-kQ0DrZ67-0utaMdWP1nw_lOp96s6VHnoqrBcAQKmKuyBQ6GoqpEXjU1KpW03k23jfUOG5Ns89DPROcng93ozh204HmRK5kEXk0C3v0YMcR_PHmiOkivskPrkpjZ2WD0dV4WlayYPLa-_AuVRoM7a9IHtjbtzwrezAoSE_Fn7GAMQa-_fP5_9vb7nH19xm4Q-rgJrh9jykWYg_kJNN6F4LG9d45Rfcz3nRv6mG895TuVvTh3_b7oLtDiNxhh90s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318799662</pqid></control><display><type>article</type><title>Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rieg, Annette D ; Rossaint, Rolf ; Uhlig, Stefan ; Martin, Christian</creator><contributor>Kolb, Martin R. J.</contributor><creatorcontrib>Rieg, Annette D ; Rossaint, Rolf ; Uhlig, Stefan ; Martin, Christian ; Kolb, Martin R. J.</creatorcontrib><description>Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins. Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins. Pulmonary veins responded stronger than arteries to α(1)-agonists (contraction) and β(2)-agonists (relaxation). Notably, inhibition of β(2)-adrenoceptors unmasked the α(1)-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V(1a) and AT(1) receptors, respectively, without affecting pulmonary arteries. Vasopressin and (nor)epinephrine in combination with β(2)-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT(1) receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α(1)-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0029698</identifier><identifier>PMID: 22216346</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adrenergic receptors ; Anesthesiology ; Angiotensin ; Angiotensin II ; Angiotensins ; Animals ; Argipressin receptors ; Arteries ; Capillary pressure ; Cardiovascular agents ; Cardiovascular Agents - pharmacology ; Contraction ; Coronary vessels ; Dose-Response Relationship, Drug ; Drugs ; Edema ; Endothelium ; Enzymes ; Epinephrine ; Female ; Guinea Pigs ; Heart ; Heart diseases ; Heart failure ; Heart surgery ; Histology ; Hypertension ; In Vitro Techniques ; Inhibition ; Localization ; Lung - blood supply ; Lungs ; Medicine ; Muscle contraction ; Muscle Tonus - drug effects ; Norepinephrine ; Pharmacology ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Artery - drug effects ; Pulmonary Artery - physiology ; Pulmonary hypertension ; Pulmonary Veins - drug effects ; Pulmonary Veins - physiology ; Receptors ; Receptors (physiology) ; Right ventricular failure ; Rodents ; Studies ; Toxicology ; Vasopressin ; Veins ; Veins &amp; arteries ; Ventricle</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e29698</ispartof><rights>2011 Rieg et al.</rights><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Rieg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Rieg et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-db971c05c1c308e253e05653baf13b74dabd02ab8270ab5d25ce95572c3cab913</citedby><cites>FETCH-LOGICAL-c757t-db971c05c1c308e253e05653baf13b74dabd02ab8270ab5d25ce95572c3cab913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22216346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kolb, Martin R. J.</contributor><creatorcontrib>Rieg, Annette D</creatorcontrib><creatorcontrib>Rossaint, Rolf</creatorcontrib><creatorcontrib>Uhlig, Stefan</creatorcontrib><creatorcontrib>Martin, Christian</creatorcontrib><title>Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins. Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins. Pulmonary veins responded stronger than arteries to α(1)-agonists (contraction) and β(2)-agonists (relaxation). Notably, inhibition of β(2)-adrenoceptors unmasked the α(1)-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V(1a) and AT(1) receptors, respectively, without affecting pulmonary arteries. Vasopressin and (nor)epinephrine in combination with β(2)-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT(1) receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α(1)-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not.</description><subject>Adrenergic receptors</subject><subject>Anesthesiology</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensins</subject><subject>Animals</subject><subject>Argipressin receptors</subject><subject>Arteries</subject><subject>Capillary pressure</subject><subject>Cardiovascular agents</subject><subject>Cardiovascular Agents - pharmacology</subject><subject>Contraction</subject><subject>Coronary vessels</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drugs</subject><subject>Edema</subject><subject>Endothelium</subject><subject>Enzymes</subject><subject>Epinephrine</subject><subject>Female</subject><subject>Guinea Pigs</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart surgery</subject><subject>Histology</subject><subject>Hypertension</subject><subject>In Vitro Techniques</subject><subject>Inhibition</subject><subject>Localization</subject><subject>Lung - blood supply</subject><subject>Lungs</subject><subject>Medicine</subject><subject>Muscle contraction</subject><subject>Muscle Tonus - drug effects</subject><subject>Norepinephrine</subject><subject>Pharmacology</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Artery - drug effects</subject><subject>Pulmonary Artery - physiology</subject><subject>Pulmonary hypertension</subject><subject>Pulmonary Veins - drug effects</subject><subject>Pulmonary Veins - physiology</subject><subject>Receptors</subject><subject>Receptors (physiology)</subject><subject>Right ventricular failure</subject><subject>Rodents</subject><subject>Studies</subject><subject>Toxicology</subject><subject>Vasopressin</subject><subject>Veins</subject><subject>Veins &amp; arteries</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QDguDFjPlo2uZGWAY_BhYW_LoNp-lpJ0OnGZN00H9vxukuU1CQXCQkz3mT8-bNsueMLpko2dutG_0A_XLvBlxSylWhqgfZJVOCLwpOxcOz9UX2JIQtpVJURfE4u-Ccs0LkxWVWr8A31h0gmLEHT6DDIQYCbYsmkrhBEpM-cS3Zj_3ODeB_EfARvcVEDQ05oB0CsQPZezQ2WDcszBhJPw4dCb01GJ5mj1roAz6b5qvs24f3X1efFje3H9er65uFKWUZF02tSmaoNMwIWiGXAqkspKihZaIu8wbqhnKoK15SqGXDpUElZcmNMFArJq6ylyfdfe-CnuwJmglWlUoVBU_E-kQ0DrZ67-0utaMdWP1nw_lOp96s6VHnoqrBcAQKmKuyBQ6GoqpEXjU1KpW03k23jfUOG5Ns89DPROcng93ozh204HmRK5kEXk0C3v0YMcR_PHmiOkivskPrkpjZ2WD0dV4WlayYPLa-_AuVRoM7a9IHtjbtzwrezAoSE_Fn7GAMQa-_fP5_9vb7nH19xm4Q-rgJrh9jykWYg_kJNN6F4LG9d45Rfcz3nRv6mG895TuVvTh3_b7oLtDiNxhh90s</recordid><startdate>20111227</startdate><enddate>20111227</enddate><creator>Rieg, Annette D</creator><creator>Rossaint, Rolf</creator><creator>Uhlig, Stefan</creator><creator>Martin, Christian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111227</creationdate><title>Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices</title><author>Rieg, Annette D ; Rossaint, Rolf ; Uhlig, Stefan ; Martin, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-db971c05c1c308e253e05653baf13b74dabd02ab8270ab5d25ce95572c3cab913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adrenergic receptors</topic><topic>Anesthesiology</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensins</topic><topic>Animals</topic><topic>Argipressin receptors</topic><topic>Arteries</topic><topic>Capillary pressure</topic><topic>Cardiovascular agents</topic><topic>Cardiovascular Agents - pharmacology</topic><topic>Contraction</topic><topic>Coronary vessels</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drugs</topic><topic>Edema</topic><topic>Endothelium</topic><topic>Enzymes</topic><topic>Epinephrine</topic><topic>Female</topic><topic>Guinea Pigs</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart surgery</topic><topic>Histology</topic><topic>Hypertension</topic><topic>In Vitro Techniques</topic><topic>Inhibition</topic><topic>Localization</topic><topic>Lung - blood supply</topic><topic>Lungs</topic><topic>Medicine</topic><topic>Muscle contraction</topic><topic>Muscle Tonus - drug effects</topic><topic>Norepinephrine</topic><topic>Pharmacology</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Artery - drug effects</topic><topic>Pulmonary Artery - physiology</topic><topic>Pulmonary hypertension</topic><topic>Pulmonary Veins - drug effects</topic><topic>Pulmonary Veins - physiology</topic><topic>Receptors</topic><topic>Receptors (physiology)</topic><topic>Right ventricular failure</topic><topic>Rodents</topic><topic>Studies</topic><topic>Toxicology</topic><topic>Vasopressin</topic><topic>Veins</topic><topic>Veins &amp; arteries</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieg, Annette D</creatorcontrib><creatorcontrib>Rossaint, Rolf</creatorcontrib><creatorcontrib>Uhlig, Stefan</creatorcontrib><creatorcontrib>Martin, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieg, Annette D</au><au>Rossaint, Rolf</au><au>Uhlig, Stefan</au><au>Martin, Christian</au><au>Kolb, Martin R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-27</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e29698</spage><pages>e29698-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins. Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins. Pulmonary veins responded stronger than arteries to α(1)-agonists (contraction) and β(2)-agonists (relaxation). Notably, inhibition of β(2)-adrenoceptors unmasked the α(1)-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V(1a) and AT(1) receptors, respectively, without affecting pulmonary arteries. Vasopressin and (nor)epinephrine in combination with β(2)-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT(1) receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α(1)-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22216346</pmid><doi>10.1371/journal.pone.0029698</doi><tpages>e29698</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-12, Vol.6 (12), p.e29698
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1318799662
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adrenergic receptors
Anesthesiology
Angiotensin
Angiotensin II
Angiotensins
Animals
Argipressin receptors
Arteries
Capillary pressure
Cardiovascular agents
Cardiovascular Agents - pharmacology
Contraction
Coronary vessels
Dose-Response Relationship, Drug
Drugs
Edema
Endothelium
Enzymes
Epinephrine
Female
Guinea Pigs
Heart
Heart diseases
Heart failure
Heart surgery
Histology
Hypertension
In Vitro Techniques
Inhibition
Localization
Lung - blood supply
Lungs
Medicine
Muscle contraction
Muscle Tonus - drug effects
Norepinephrine
Pharmacology
Pulmonary arteries
Pulmonary artery
Pulmonary Artery - drug effects
Pulmonary Artery - physiology
Pulmonary hypertension
Pulmonary Veins - drug effects
Pulmonary Veins - physiology
Receptors
Receptors (physiology)
Right ventricular failure
Rodents
Studies
Toxicology
Vasopressin
Veins
Veins & arteries
Ventricle
title Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiovascular%20agents%20affect%20the%20tone%20of%20pulmonary%20arteries%20and%20veins%20in%20precision-cut%20lung%20slices&rft.jtitle=PloS%20one&rft.au=Rieg,%20Annette%20D&rft.date=2011-12-27&rft.volume=6&rft.issue=12&rft.spage=e29698&rft.pages=e29698-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0029698&rft_dat=%3Cgale_plos_%3EA476858151%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318799662&rft_id=info:pmid/22216346&rft_galeid=A476858151&rft_doaj_id=oai_doaj_org_article_438bac2ea0ae497fa2ac0e98348dbe99&rfr_iscdi=true