MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1
Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny r...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-12, Vol.6 (12), p.e28052-e28052 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e28052 |
---|---|
container_issue | 12 |
container_start_page | e28052 |
container_title | PloS one |
container_volume | 6 |
creator | Fang, Ya-dong Xu, Xue Dang, Yong-ming Zhang, Yi-ming Zhang, Jia-ping Hu, Jiong-yu Zhang, Qiong Dai, Xia Teng, Miao Zhang, Dong-xia Huang, Yue-sheng |
description | Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O(2)) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization. |
doi_str_mv | 10.1371/journal.pone.0028052 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1317861011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476861270</galeid><doaj_id>oai_doaj_org_article_a0c0c8285ad5464eb620a96a22838cc4</doaj_id><sourcerecordid>A476861270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-dc466e310ed2ba67067644741c6afabb29a523cfa6818c51d22944c9fd8421fa3</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYmPwBggiIYG4aLEdx0m4QKo6_lQqDMGYxJV14jiNq8QutgMrj8BT47bZtKBdIF_Esn_fZ-fzOVH0GKMpTjL8am16q6GdboyWU4RIjlJyJzrGRUImjKDk7o35UfTAuTVCaZIzdj86IgQzSkh2HP35OPtM406KBrRyXewb8LHzUKpW_ZYu7pQ3ojG6sgraeCNtJ_d7fht7C9opr4yOlY6b7cZcKngdFMIa35d9K2Opg62QndQ-Bl3Fp98_Lc9xwL20IPbSX8o38cXpbI4fRvdqaJ18NHxPom_v3p7PP0yWZ-8X89lyIliB_aQSlDGZYCQrUgLLEMsYpRnFgkENZUkKSEkiamA5zkWKK0IKSkVRVzkluIbkJHp68N20xvEhRsdxgrOcYYRxIBYHojKw5hurOrBbbkDx_YKxKw7WK9FKDkggkZM8hSqljMoyxA0FA0LyJBeCBq83w2l92clKhCgstCPT8Y5WDV-ZnzwJ905RHgxeDAbW_Oil87xTTsi2BS1N73iBcUFxmrNAPvuHvP3nBmoF4f5K1yYcK3aefEYzFiiSoUBNb6HCqGR44FBytQrrI8HLkSAwXl76FfTO8cXXL__Pnl2M2ec32EZC6xtn2n5XPG4M0gMYys85K-vrjDHiu465SoPvOoYPHRNkT26-z7XoqkWSv3cZEcM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317861011</pqid></control><display><type>article</type><title>MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek</source><source>PLoS_OA刊</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fang, Ya-dong ; Xu, Xue ; Dang, Yong-ming ; Zhang, Yi-ming ; Zhang, Jia-ping ; Hu, Jiong-yu ; Zhang, Qiong ; Dai, Xia ; Teng, Miao ; Zhang, Dong-xia ; Huang, Yue-sheng</creator><contributor>Keen, James</contributor><creatorcontrib>Fang, Ya-dong ; Xu, Xue ; Dang, Yong-ming ; Zhang, Yi-ming ; Zhang, Jia-ping ; Hu, Jiong-yu ; Zhang, Qiong ; Dai, Xia ; Teng, Miao ; Zhang, Dong-xia ; Huang, Yue-sheng ; Keen, James</creatorcontrib><description>Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O(2)) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028052</identifier><identifier>PMID: 22164227</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - metabolism ; Animal models ; Animals ; Apoptosis ; Biology ; Cardiomyocytes ; Cell culture ; Cell cycle ; Cell Survival ; Chemical synthesis ; Cytochrome ; Disruption ; Dynein ; Dyneins - metabolism ; Gene Expression Regulation ; Green Fluorescent Proteins - metabolism ; HeLa Cells ; Humans ; Hybrid systems ; Hypoxia ; Hypoxia - metabolism ; Immunofluorescence ; Immunoprecipitation ; Laboratories ; Medicine ; Membrane permeability ; Microscopy, Confocal - methods ; Microtubule-associated protein 4 ; Microtubule-associated proteins ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Permeability ; Phosphorylation ; Physics ; Physiological aspects ; Plastic surgery ; Polymerization ; Protein interaction ; Protein-protein interactions ; Proteins ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - metabolism ; Respiration ; Smooth muscle ; Stabilization ; Trauma ; Tubulin ; Two-Hybrid System Techniques ; Voltage-Dependent Anion Channel 1 - metabolism ; Yeast</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28052-e28052</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Fang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Fang et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-dc466e310ed2ba67067644741c6afabb29a523cfa6818c51d22944c9fd8421fa3</citedby><cites>FETCH-LOGICAL-c691t-dc466e310ed2ba67067644741c6afabb29a523cfa6818c51d22944c9fd8421fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229508/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229508/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22164227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Keen, James</contributor><creatorcontrib>Fang, Ya-dong</creatorcontrib><creatorcontrib>Xu, Xue</creatorcontrib><creatorcontrib>Dang, Yong-ming</creatorcontrib><creatorcontrib>Zhang, Yi-ming</creatorcontrib><creatorcontrib>Zhang, Jia-ping</creatorcontrib><creatorcontrib>Hu, Jiong-yu</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Dai, Xia</creatorcontrib><creatorcontrib>Teng, Miao</creatorcontrib><creatorcontrib>Zhang, Dong-xia</creatorcontrib><creatorcontrib>Huang, Yue-sheng</creatorcontrib><title>MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O(2)) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Cardiomyocytes</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell Survival</subject><subject>Chemical synthesis</subject><subject>Cytochrome</subject><subject>Disruption</subject><subject>Dynein</subject><subject>Dyneins - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hybrid systems</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Immunofluorescence</subject><subject>Immunoprecipitation</subject><subject>Laboratories</subject><subject>Medicine</subject><subject>Membrane permeability</subject><subject>Microscopy, Confocal - methods</subject><subject>Microtubule-associated protein 4</subject><subject>Microtubule-associated proteins</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Plastic surgery</subject><subject>Polymerization</subject><subject>Protein interaction</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - metabolism</subject><subject>Respiration</subject><subject>Smooth muscle</subject><subject>Stabilization</subject><subject>Trauma</subject><subject>Tubulin</subject><subject>Two-Hybrid System Techniques</subject><subject>Voltage-Dependent Anion Channel 1 - metabolism</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYmPwBggiIYG4aLEdx0m4QKo6_lQqDMGYxJV14jiNq8QutgMrj8BT47bZtKBdIF_Esn_fZ-fzOVH0GKMpTjL8am16q6GdboyWU4RIjlJyJzrGRUImjKDk7o35UfTAuTVCaZIzdj86IgQzSkh2HP35OPtM406KBrRyXewb8LHzUKpW_ZYu7pQ3ojG6sgraeCNtJ_d7fht7C9opr4yOlY6b7cZcKngdFMIa35d9K2Opg62QndQ-Bl3Fp98_Lc9xwL20IPbSX8o38cXpbI4fRvdqaJ18NHxPom_v3p7PP0yWZ-8X89lyIliB_aQSlDGZYCQrUgLLEMsYpRnFgkENZUkKSEkiamA5zkWKK0IKSkVRVzkluIbkJHp68N20xvEhRsdxgrOcYYRxIBYHojKw5hurOrBbbkDx_YKxKw7WK9FKDkggkZM8hSqljMoyxA0FA0LyJBeCBq83w2l92clKhCgstCPT8Y5WDV-ZnzwJ905RHgxeDAbW_Oil87xTTsi2BS1N73iBcUFxmrNAPvuHvP3nBmoF4f5K1yYcK3aefEYzFiiSoUBNb6HCqGR44FBytQrrI8HLkSAwXl76FfTO8cXXL__Pnl2M2ec32EZC6xtn2n5XPG4M0gMYys85K-vrjDHiu465SoPvOoYPHRNkT26-z7XoqkWSv3cZEcM</recordid><startdate>20111202</startdate><enddate>20111202</enddate><creator>Fang, Ya-dong</creator><creator>Xu, Xue</creator><creator>Dang, Yong-ming</creator><creator>Zhang, Yi-ming</creator><creator>Zhang, Jia-ping</creator><creator>Hu, Jiong-yu</creator><creator>Zhang, Qiong</creator><creator>Dai, Xia</creator><creator>Teng, Miao</creator><creator>Zhang, Dong-xia</creator><creator>Huang, Yue-sheng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111202</creationdate><title>MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1</title><author>Fang, Ya-dong ; Xu, Xue ; Dang, Yong-ming ; Zhang, Yi-ming ; Zhang, Jia-ping ; Hu, Jiong-yu ; Zhang, Qiong ; Dai, Xia ; Teng, Miao ; Zhang, Dong-xia ; Huang, Yue-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-dc466e310ed2ba67067644741c6afabb29a523cfa6818c51d22944c9fd8421fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Cardiomyocytes</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell Survival</topic><topic>Chemical synthesis</topic><topic>Cytochrome</topic><topic>Disruption</topic><topic>Dynein</topic><topic>Dyneins - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hybrid systems</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Immunofluorescence</topic><topic>Immunoprecipitation</topic><topic>Laboratories</topic><topic>Medicine</topic><topic>Membrane permeability</topic><topic>Microscopy, Confocal - methods</topic><topic>Microtubule-associated protein 4</topic><topic>Microtubule-associated proteins</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Plastic surgery</topic><topic>Polymerization</topic><topic>Protein interaction</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - metabolism</topic><topic>Respiration</topic><topic>Smooth muscle</topic><topic>Stabilization</topic><topic>Trauma</topic><topic>Tubulin</topic><topic>Two-Hybrid System Techniques</topic><topic>Voltage-Dependent Anion Channel 1 - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Ya-dong</creatorcontrib><creatorcontrib>Xu, Xue</creatorcontrib><creatorcontrib>Dang, Yong-ming</creatorcontrib><creatorcontrib>Zhang, Yi-ming</creatorcontrib><creatorcontrib>Zhang, Jia-ping</creatorcontrib><creatorcontrib>Hu, Jiong-yu</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Dai, Xia</creatorcontrib><creatorcontrib>Teng, Miao</creatorcontrib><creatorcontrib>Zhang, Dong-xia</creatorcontrib><creatorcontrib>Huang, Yue-sheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Ya-dong</au><au>Xu, Xue</au><au>Dang, Yong-ming</au><au>Zhang, Yi-ming</au><au>Zhang, Jia-ping</au><au>Hu, Jiong-yu</au><au>Zhang, Qiong</au><au>Dai, Xia</au><au>Teng, Miao</au><au>Zhang, Dong-xia</au><au>Huang, Yue-sheng</au><au>Keen, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-02</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28052</spage><epage>e28052</epage><pages>e28052-e28052</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O(2)) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22164227</pmid><doi>10.1371/journal.pone.0028052</doi><tpages>e28052</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e28052-e28052 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1317861011 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek; PLoS_OA刊; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - metabolism Animal models Animals Apoptosis Biology Cardiomyocytes Cell culture Cell cycle Cell Survival Chemical synthesis Cytochrome Disruption Dynein Dyneins - metabolism Gene Expression Regulation Green Fluorescent Proteins - metabolism HeLa Cells Humans Hybrid systems Hypoxia Hypoxia - metabolism Immunofluorescence Immunoprecipitation Laboratories Medicine Membrane permeability Microscopy, Confocal - methods Microtubule-associated protein 4 Microtubule-associated proteins Microtubule-Associated Proteins - metabolism Microtubules - metabolism Mitochondria Mitochondria - metabolism Mitochondrial DNA Permeability Phosphorylation Physics Physiological aspects Plastic surgery Polymerization Protein interaction Protein-protein interactions Proteins Rats Rats, Sprague-Dawley Recombinant Proteins - metabolism Respiration Smooth muscle Stabilization Trauma Tubulin Two-Hybrid System Techniques Voltage-Dependent Anion Channel 1 - metabolism Yeast |
title | MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAP4%20mechanism%20that%20stabilizes%20mitochondrial%20permeability%20transition%20in%20hypoxia:%20microtubule%20enhancement%20and%20DYNLT1%20interaction%20with%20VDAC1&rft.jtitle=PloS%20one&rft.au=Fang,%20Ya-dong&rft.date=2011-12-02&rft.volume=6&rft.issue=12&rft.spage=e28052&rft.epage=e28052&rft.pages=e28052-e28052&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028052&rft_dat=%3Cgale_plos_%3EA476861270%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317861011&rft_id=info:pmid/22164227&rft_galeid=A476861270&rft_doaj_id=oai_doaj_org_article_a0c0c8285ad5464eb620a96a22838cc4&rfr_iscdi=true |