Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system

Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2008-05, Vol.3 (5), p.e2110-e2110
Hauptverfasser: Kolodziejczyk, Agata, Sun, Xuejun, Meinertzhagen, Ian A, Nässel, Dick R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2110
container_issue 5
container_start_page e2110
container_title PloS one
container_volume 3
creator Kolodziejczyk, Agata
Sun, Xuejun
Meinertzhagen, Ian A
Nässel, Dick R
description Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.
doi_str_mv 10.1371/journal.pone.0002110
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1317860215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472652339</galeid><doaj_id>oai_doaj_org_article_64c290989ded4e6b97a0fe93be0ecd59</doaj_id><sourcerecordid>A472652339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c815t-8b7f1252a84bbdd08dd4beecf657350fcf32701d55480d6b951f53614a74eada3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQpqEoMWOP5LcIJUNSqVJk_jYreXYJ6knJy6xM-i_x20DNIgLlIvE9nPek_P6nCR5itEckxy_uXVD30k737gO5gihDGN0LznFJclmPEPk_tH3SfLI-1uEGCk4f5ic4IJyWhJ2muilHYJsZYDX6XLxbpHKTqdSQdhatXbWdJB608Q8pmtS5dpdti741HRpWENqZWs6mbp6v7rsnXebtbEyvTN-kDb1Wx-gfZw8qKX18GR8nyVfP7z_cvFxdnW9XF0srmaqwCzMiiqvccYyWdCq0hoVWtMKQNWc5YShWtUkyxHWjNECaV6VDNeMcExlTkFqSc6S5wfdjXVejAZ5gQnOCx4NYpFYHQjt5K3Y9KaV_VY4acR-w_WNkH0wyoLgVGUlKotSg6YQs-US1VCSChAozcqo9eqg5b_DZqgmapfmZrFX84PANCtxpN-O_zZULWgVXeylnQRNTzqzFo27ExnJSZHvBM5Hgd59G8AH0RqvwFrZgRu84CUuMc_zCL74C_y3E_MD1chYrOlqF7Oq-GhojYq3XJu4v6B5xllGyK7cl5OAyAT4ERo5eC9Wnz_9P3t9M2XPj9g1SBvW3sWuNK7zU5AeQBXbzPdQ_zYPI7EbiV91il2TinEkYtizY-P_BI0zQH4CL-QIeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317860215</pqid></control><display><type>article</type><title>Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Kolodziejczyk, Agata ; Sun, Xuejun ; Meinertzhagen, Ian A ; Nässel, Dick R</creator><creatorcontrib>Kolodziejczyk, Agata ; Sun, Xuejun ; Meinertzhagen, Ian A ; Nässel, Dick R</creatorcontrib><description>Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0002110</identifier><identifier>PMID: 18464935</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylcholine ; Acetylcholine - physiology ; Amino Acid Transport System X-AG - physiology ; Analysis ; Animal physiology ; Animals ; Antisera ; Biologi ; Biology ; Choline O-acetyltransferase ; Circuits ; Cloning ; Developmental plasticity ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Drosophila Proteins - physiology ; Enzymes ; Fluorescence ; Functional Zoomorphology ; funktionell zoomorfologi ; GABA ; gamma-Aminobutyric Acid - physiology ; Glutamate ; Glutamate decarboxylase ; Glutamic acid ; Glutamic Acid - physiology ; Glutamic acid receptors (metabotropic) ; Glutamic acid transporter ; Green fluorescent protein ; Immunoreactivity ; Insects ; Life sciences ; Localization ; NATURAL SCIENCES ; NATURVETENSKAP ; Nervous system ; Neurons ; Neurons - physiology ; Neuropeptides ; Neuroscience ; Neuroscience/Sensory Systems ; Neurotransmitters ; Ocular Physiological Phenomena ; Organism biology ; Organismbiologi ; Phenotype ; Photoreceptors ; Physiology ; Proteins ; Receptors ; Receptors, Glutamate - physiology ; Signal Transduction ; Studies ; Synapses ; Synapses - physiology ; Synaptic plasticity ; Synaptogenesis ; Transporter ; Vesicular acetylcholine transporter ; Visual pathways ; Visual perception ; Visual signals ; Visual system ; Zoofysiologi ; γ-Aminobutyric acid A receptors ; γ-Aminobutyric acid B receptors</subject><ispartof>PloS one, 2008-05, Vol.3 (5), p.e2110-e2110</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Kolodziejczyk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kolodziejczyk et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c815t-8b7f1252a84bbdd08dd4beecf657350fcf32701d55480d6b951f53614a74eada3</citedby><cites>FETCH-LOGICAL-c815t-8b7f1252a84bbdd08dd4beecf657350fcf32701d55480d6b951f53614a74eada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373871/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373871/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18464935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-14291$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolodziejczyk, Agata</creatorcontrib><creatorcontrib>Sun, Xuejun</creatorcontrib><creatorcontrib>Meinertzhagen, Ian A</creatorcontrib><creatorcontrib>Nässel, Dick R</creatorcontrib><title>Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.</description><subject>Acetylcholine</subject><subject>Acetylcholine - physiology</subject><subject>Amino Acid Transport System X-AG - physiology</subject><subject>Analysis</subject><subject>Animal physiology</subject><subject>Animals</subject><subject>Antisera</subject><subject>Biologi</subject><subject>Biology</subject><subject>Choline O-acetyltransferase</subject><subject>Circuits</subject><subject>Cloning</subject><subject>Developmental plasticity</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - physiology</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Functional Zoomorphology</subject><subject>funktionell zoomorfologi</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Glutamate</subject><subject>Glutamate decarboxylase</subject><subject>Glutamic acid</subject><subject>Glutamic Acid - physiology</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Glutamic acid transporter</subject><subject>Green fluorescent protein</subject><subject>Immunoreactivity</subject><subject>Insects</subject><subject>Life sciences</subject><subject>Localization</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuropeptides</subject><subject>Neuroscience</subject><subject>Neuroscience/Sensory Systems</subject><subject>Neurotransmitters</subject><subject>Ocular Physiological Phenomena</subject><subject>Organism biology</subject><subject>Organismbiologi</subject><subject>Phenotype</subject><subject>Photoreceptors</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Glutamate - physiology</subject><subject>Signal Transduction</subject><subject>Studies</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Transporter</subject><subject>Vesicular acetylcholine transporter</subject><subject>Visual pathways</subject><subject>Visual perception</subject><subject>Visual signals</subject><subject>Visual system</subject><subject>Zoofysiologi</subject><subject>γ-Aminobutyric acid A receptors</subject><subject>γ-Aminobutyric acid B receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQpqEoMWOP5LcIJUNSqVJk_jYreXYJ6knJy6xM-i_x20DNIgLlIvE9nPek_P6nCR5itEckxy_uXVD30k737gO5gihDGN0LznFJclmPEPk_tH3SfLI-1uEGCk4f5ic4IJyWhJ2muilHYJsZYDX6XLxbpHKTqdSQdhatXbWdJB608Q8pmtS5dpdti741HRpWENqZWs6mbp6v7rsnXebtbEyvTN-kDb1Wx-gfZw8qKX18GR8nyVfP7z_cvFxdnW9XF0srmaqwCzMiiqvccYyWdCq0hoVWtMKQNWc5YShWtUkyxHWjNECaV6VDNeMcExlTkFqSc6S5wfdjXVejAZ5gQnOCx4NYpFYHQjt5K3Y9KaV_VY4acR-w_WNkH0wyoLgVGUlKotSg6YQs-US1VCSChAozcqo9eqg5b_DZqgmapfmZrFX84PANCtxpN-O_zZULWgVXeylnQRNTzqzFo27ExnJSZHvBM5Hgd59G8AH0RqvwFrZgRu84CUuMc_zCL74C_y3E_MD1chYrOlqF7Oq-GhojYq3XJu4v6B5xllGyK7cl5OAyAT4ERo5eC9Wnz_9P3t9M2XPj9g1SBvW3sWuNK7zU5AeQBXbzPdQ_zYPI7EbiV91il2TinEkYtizY-P_BI0zQH4CL-QIeA</recordid><startdate>20080507</startdate><enddate>20080507</enddate><creator>Kolodziejczyk, Agata</creator><creator>Sun, Xuejun</creator><creator>Meinertzhagen, Ian A</creator><creator>Nässel, Dick R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><scope>DOA</scope></search><sort><creationdate>20080507</creationdate><title>Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system</title><author>Kolodziejczyk, Agata ; Sun, Xuejun ; Meinertzhagen, Ian A ; Nässel, Dick R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c815t-8b7f1252a84bbdd08dd4beecf657350fcf32701d55480d6b951f53614a74eada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetylcholine</topic><topic>Acetylcholine - physiology</topic><topic>Amino Acid Transport System X-AG - physiology</topic><topic>Analysis</topic><topic>Animal physiology</topic><topic>Animals</topic><topic>Antisera</topic><topic>Biologi</topic><topic>Biology</topic><topic>Choline O-acetyltransferase</topic><topic>Circuits</topic><topic>Cloning</topic><topic>Developmental plasticity</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - physiology</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Functional Zoomorphology</topic><topic>funktionell zoomorfologi</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Glutamate</topic><topic>Glutamate decarboxylase</topic><topic>Glutamic acid</topic><topic>Glutamic Acid - physiology</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Glutamic acid transporter</topic><topic>Green fluorescent protein</topic><topic>Immunoreactivity</topic><topic>Insects</topic><topic>Life sciences</topic><topic>Localization</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuropeptides</topic><topic>Neuroscience</topic><topic>Neuroscience/Sensory Systems</topic><topic>Neurotransmitters</topic><topic>Ocular Physiological Phenomena</topic><topic>Organism biology</topic><topic>Organismbiologi</topic><topic>Phenotype</topic><topic>Photoreceptors</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Glutamate - physiology</topic><topic>Signal Transduction</topic><topic>Studies</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Transporter</topic><topic>Vesicular acetylcholine transporter</topic><topic>Visual pathways</topic><topic>Visual perception</topic><topic>Visual signals</topic><topic>Visual system</topic><topic>Zoofysiologi</topic><topic>γ-Aminobutyric acid A receptors</topic><topic>γ-Aminobutyric acid B receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolodziejczyk, Agata</creatorcontrib><creatorcontrib>Sun, Xuejun</creatorcontrib><creatorcontrib>Meinertzhagen, Ian A</creatorcontrib><creatorcontrib>Nässel, Dick R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolodziejczyk, Agata</au><au>Sun, Xuejun</au><au>Meinertzhagen, Ian A</au><au>Nässel, Dick R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-05-07</date><risdate>2008</risdate><volume>3</volume><issue>5</issue><spage>e2110</spage><epage>e2110</epage><pages>e2110-e2110</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18464935</pmid><doi>10.1371/journal.pone.0002110</doi><tpages>e2110</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2008-05, Vol.3 (5), p.e2110-e2110
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1317860215
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Acetylcholine
Acetylcholine - physiology
Amino Acid Transport System X-AG - physiology
Analysis
Animal physiology
Animals
Antisera
Biologi
Biology
Choline O-acetyltransferase
Circuits
Cloning
Developmental plasticity
Drosophila
Drosophila melanogaster
Drosophila melanogaster - physiology
Drosophila Proteins - physiology
Enzymes
Fluorescence
Functional Zoomorphology
funktionell zoomorfologi
GABA
gamma-Aminobutyric Acid - physiology
Glutamate
Glutamate decarboxylase
Glutamic acid
Glutamic Acid - physiology
Glutamic acid receptors (metabotropic)
Glutamic acid transporter
Green fluorescent protein
Immunoreactivity
Insects
Life sciences
Localization
NATURAL SCIENCES
NATURVETENSKAP
Nervous system
Neurons
Neurons - physiology
Neuropeptides
Neuroscience
Neuroscience/Sensory Systems
Neurotransmitters
Ocular Physiological Phenomena
Organism biology
Organismbiologi
Phenotype
Photoreceptors
Physiology
Proteins
Receptors
Receptors, Glutamate - physiology
Signal Transduction
Studies
Synapses
Synapses - physiology
Synaptic plasticity
Synaptogenesis
Transporter
Vesicular acetylcholine transporter
Visual pathways
Visual perception
Visual signals
Visual system
Zoofysiologi
γ-Aminobutyric acid A receptors
γ-Aminobutyric acid B receptors
title Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutamate,%20GABA%20and%20acetylcholine%20signaling%20components%20in%20the%20lamina%20of%20the%20Drosophila%20visual%20system&rft.jtitle=PloS%20one&rft.au=Kolodziejczyk,%20Agata&rft.date=2008-05-07&rft.volume=3&rft.issue=5&rft.spage=e2110&rft.epage=e2110&rft.pages=e2110-e2110&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0002110&rft_dat=%3Cgale_plos_%3EA472652339%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317860215&rft_id=info:pmid/18464935&rft_galeid=A472652339&rft_doaj_id=oai_doaj_org_article_64c290989ded4e6b97a0fe93be0ecd59&rfr_iscdi=true