Structural properties of the Caenorhabditis elegans neuronal network

Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2011-02, Vol.7 (2), p.e1001066-e1001066
Hauptverfasser: Varshney, Lav R, Chen, Beth L, Paniagua, Eric, Hall, David H, Chklovskii, Dmitri B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1001066
container_issue 2
container_start_page e1001066
container_title PLoS computational biology
container_volume 7
creator Varshney, Lav R
Chen, Beth L
Paniagua, Eric
Hall, David H
Chklovskii, Dmitri B
description Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.
doi_str_mv 10.1371/journal.pcbi.1001066
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314507409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A250677715</galeid><doaj_id>oai_doaj_org_article_6a6b03e9bb5444bc8c8b95ad9759c879</doaj_id><sourcerecordid>A250677715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c702t-b179f7bc313bf72325005ecdcc16f04f99cbf89df24e37a7969bb0abc43112273</originalsourceid><addsrcrecordid>eNqVksFu1DAQhiMEoqXwBghyQxx2sePYji9I1VJgpQokCmfLdsZZL9k4tR0ob4-3m1bdE0I-eDT-5h_N7ymKlxgtMeH43dZPYVD9cjTaLTFCGDH2qDjFlJIFJ7R5_CA-KZ7FuEUoh4I9LU4qTFAtCDotPlylMJk0BdWXY_AjhOQglt6WaQPlSsHgw0bp1iUXS-ihU0MsB5iCz71zkH778PN58cSqPsKL-T4rfny8-L76vLj8-mm9Or9cGI6qtNCYC8u1IZhoyytSUYQomNYYzCyqrRBG20a0tqqBcMUFE1ojpU1NMK4qTs6K1wfdsfdRzgZEiQmuKeI1EplYH4jWq60cg9up8Ed65eRtwodOqjyh6UEyxTQikFvQuq61aUyjBVWt4FSYhu-13s_dJr2D1sCQsktHoscvg9vIzv-SBBFCWJUF3swCwV9PEJPcuWig79UAfopSII7p3oZ_kg29nZ-zTC4PZKfyDG6wPrc2-bSwc8YPYF3On2drGedZPhe8PSrITIKb1KkpRrm--vYf7Jdjtj6wJvgYA9h7YzCS-wW9-x-5X1A5L2gue_XQ1Puiu40kfwHHruKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851227376</pqid></control><display><type>article</type><title>Structural properties of the Caenorhabditis elegans neuronal network</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Varshney, Lav R ; Chen, Beth L ; Paniagua, Eric ; Hall, David H ; Chklovskii, Dmitri B</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Varshney, Lav R ; Chen, Beth L ; Paniagua, Eric ; Hall, David H ; Chklovskii, Dmitri B ; Sporns, Olaf</creatorcontrib><description>Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1001066</identifier><identifier>PMID: 21304930</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Behavior ; Caenorhabditis elegans ; Caenorhabditis elegans - anatomy &amp; histology ; Caenorhabditis elegans - physiology ; Computational Biology ; Experiments ; Gap Junctions - physiology ; Gap Junctions - ultrastructure ; Genetic aspects ; Hypotheses ; Interneurons - cytology ; Interneurons - physiology ; Mathematical Concepts ; Models, Anatomic ; Models, Neurological ; Motor Neurons - cytology ; Motor Neurons - physiology ; Nematoda ; Nematodes ; Nerve Net - anatomy &amp; histology ; Nerve Net - physiology ; Neural circuitry ; Neural networks ; Neurons ; Neuroscience/Motor Systems ; Neuroscience/Sensory Systems ; Neuroscience/Theoretical Neuroscience ; Neurosciences ; Propagation ; Sensory Receptor Cells - cytology ; Sensory Receptor Cells - physiology ; Studies ; Synapses - physiology ; Synapses - ultrastructure ; System theory ; Systems Biology</subject><ispartof>PLoS computational biology, 2011-02, Vol.7 (2), p.e1001066-e1001066</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Varshney et al. 2011</rights><rights>2011 Varshney et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural Properties of the Caenorhabditis elegans Neuronal Network. PLoS Comput Biol 7(2): e1001066. doi:10.1371/journal.pcbi.1001066</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c702t-b179f7bc313bf72325005ecdcc16f04f99cbf89df24e37a7969bb0abc43112273</citedby><cites>FETCH-LOGICAL-c702t-b179f7bc313bf72325005ecdcc16f04f99cbf89df24e37a7969bb0abc43112273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033362/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033362/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21304930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Varshney, Lav R</creatorcontrib><creatorcontrib>Chen, Beth L</creatorcontrib><creatorcontrib>Paniagua, Eric</creatorcontrib><creatorcontrib>Hall, David H</creatorcontrib><creatorcontrib>Chklovskii, Dmitri B</creatorcontrib><title>Structural properties of the Caenorhabditis elegans neuronal network</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.</description><subject>Animals</subject><subject>Behavior</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - anatomy &amp; histology</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Computational Biology</subject><subject>Experiments</subject><subject>Gap Junctions - physiology</subject><subject>Gap Junctions - ultrastructure</subject><subject>Genetic aspects</subject><subject>Hypotheses</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Mathematical Concepts</subject><subject>Models, Anatomic</subject><subject>Models, Neurological</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - physiology</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neuroscience/Motor Systems</subject><subject>Neuroscience/Sensory Systems</subject><subject>Neuroscience/Theoretical Neuroscience</subject><subject>Neurosciences</subject><subject>Propagation</subject><subject>Sensory Receptor Cells - cytology</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Studies</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>System theory</subject><subject>Systems Biology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVksFu1DAQhiMEoqXwBghyQxx2sePYji9I1VJgpQokCmfLdsZZL9k4tR0ob4-3m1bdE0I-eDT-5h_N7ymKlxgtMeH43dZPYVD9cjTaLTFCGDH2qDjFlJIFJ7R5_CA-KZ7FuEUoh4I9LU4qTFAtCDotPlylMJk0BdWXY_AjhOQglt6WaQPlSsHgw0bp1iUXS-ihU0MsB5iCz71zkH778PN58cSqPsKL-T4rfny8-L76vLj8-mm9Or9cGI6qtNCYC8u1IZhoyytSUYQomNYYzCyqrRBG20a0tqqBcMUFE1ojpU1NMK4qTs6K1wfdsfdRzgZEiQmuKeI1EplYH4jWq60cg9up8Ed65eRtwodOqjyh6UEyxTQikFvQuq61aUyjBVWt4FSYhu-13s_dJr2D1sCQsktHoscvg9vIzv-SBBFCWJUF3swCwV9PEJPcuWig79UAfopSII7p3oZ_kg29nZ-zTC4PZKfyDG6wPrc2-bSwc8YPYF3On2drGedZPhe8PSrITIKb1KkpRrm--vYf7Jdjtj6wJvgYA9h7YzCS-wW9-x-5X1A5L2gue_XQ1Puiu40kfwHHruKg</recordid><startdate>20110203</startdate><enddate>20110203</enddate><creator>Varshney, Lav R</creator><creator>Chen, Beth L</creator><creator>Paniagua, Eric</creator><creator>Hall, David H</creator><creator>Chklovskii, Dmitri B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110203</creationdate><title>Structural properties of the Caenorhabditis elegans neuronal network</title><author>Varshney, Lav R ; Chen, Beth L ; Paniagua, Eric ; Hall, David H ; Chklovskii, Dmitri B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c702t-b179f7bc313bf72325005ecdcc16f04f99cbf89df24e37a7969bb0abc43112273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - anatomy &amp; histology</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Computational Biology</topic><topic>Experiments</topic><topic>Gap Junctions - physiology</topic><topic>Gap Junctions - ultrastructure</topic><topic>Genetic aspects</topic><topic>Hypotheses</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Mathematical Concepts</topic><topic>Models, Anatomic</topic><topic>Models, Neurological</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - physiology</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neuroscience/Motor Systems</topic><topic>Neuroscience/Sensory Systems</topic><topic>Neuroscience/Theoretical Neuroscience</topic><topic>Neurosciences</topic><topic>Propagation</topic><topic>Sensory Receptor Cells - cytology</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Studies</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>System theory</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varshney, Lav R</creatorcontrib><creatorcontrib>Chen, Beth L</creatorcontrib><creatorcontrib>Paniagua, Eric</creatorcontrib><creatorcontrib>Hall, David H</creatorcontrib><creatorcontrib>Chklovskii, Dmitri B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varshney, Lav R</au><au>Chen, Beth L</au><au>Paniagua, Eric</au><au>Hall, David H</au><au>Chklovskii, Dmitri B</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural properties of the Caenorhabditis elegans neuronal network</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-02-03</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>e1001066</spage><epage>e1001066</epage><pages>e1001066-e1001066</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21304930</pmid><doi>10.1371/journal.pcbi.1001066</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-02, Vol.7 (2), p.e1001066-e1001066
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1314507409
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Animals
Behavior
Caenorhabditis elegans
Caenorhabditis elegans - anatomy & histology
Caenorhabditis elegans - physiology
Computational Biology
Experiments
Gap Junctions - physiology
Gap Junctions - ultrastructure
Genetic aspects
Hypotheses
Interneurons - cytology
Interneurons - physiology
Mathematical Concepts
Models, Anatomic
Models, Neurological
Motor Neurons - cytology
Motor Neurons - physiology
Nematoda
Nematodes
Nerve Net - anatomy & histology
Nerve Net - physiology
Neural circuitry
Neural networks
Neurons
Neuroscience/Motor Systems
Neuroscience/Sensory Systems
Neuroscience/Theoretical Neuroscience
Neurosciences
Propagation
Sensory Receptor Cells - cytology
Sensory Receptor Cells - physiology
Studies
Synapses - physiology
Synapses - ultrastructure
System theory
Systems Biology
title Structural properties of the Caenorhabditis elegans neuronal network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20properties%20of%20the%20Caenorhabditis%20elegans%20neuronal%20network&rft.jtitle=PLoS%20computational%20biology&rft.au=Varshney,%20Lav%20R&rft.date=2011-02-03&rft.volume=7&rft.issue=2&rft.spage=e1001066&rft.epage=e1001066&rft.pages=e1001066-e1001066&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1001066&rft_dat=%3Cgale_plos_%3EA250677715%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851227376&rft_id=info:pmid/21304930&rft_galeid=A250677715&rft_doaj_id=oai_doaj_org_article_6a6b03e9bb5444bc8c8b95ad9759c879&rfr_iscdi=true