The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging

Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2008-07, Vol.4 (7), p.e1000127-e1000127
Hauptverfasser: Lu, Shaoying, Ouyang, Mingxing, Seong, Jihye, Zhang, Jin, Chien, Shu, Wang, Yingxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000127
container_issue 7
container_start_page e1000127
container_title PLoS computational biology
container_volume 4
creator Lu, Shaoying
Ouyang, Mingxing
Seong, Jihye
Zhang, Jin
Chien, Shu
Wang, Yingxiao
description Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.
doi_str_mv 10.1371/journal.pcbi.1000127
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314506512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A203231966</galeid><doaj_id>oai_doaj_org_article_1b5c1869ac444caaa3cb126802882f68</doaj_id><sourcerecordid>A203231966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</originalsourceid><addsrcrecordid>eNqVkl1v0zAUhiMEYqPwDxD4ComLFh9_xblBmqYNKk0gbeXachwn9ZTGwXYq9u9xaYD1CiFL9vHxc15br09RvAa8AlrCh3s_hUH3q9HUbgUYYyDlk-IcOKfLknL59FF8VryI8R7jHFbieXEGsgQQtDwvtputRXHUyflkd6MPukd5l2wYkG_RXTBIm-T2B2BAOqHeja5BQbcpomD3Vve2QfUDalzbTjFDS-NDsCbl9PXt1Qa5ne7c0L0snrW6j_bVvC6Kb9dXm8vPy5uvn9aXFzdLU2Kclk1lJIYSQ103FhshKBNCEsZbXZImT5SVggJhIKmppJC8JpTjusbaGjCaLoq3R92x91HNJkUFFBjHggPJxPpINF7fqzHkB4YH5bVTvxI-dEqH5ExvFdTcgBSVNowxo7WmpgYiJCZSklbIrPVxvm2qd7YxdkjZwRPR05PBbVXn94pwKAXQLPBuFgj--2RjUjsXje17PVg_RSUqxggw_E-QAKaS08OTVkewy1-j3ND6fLHJo7E7Z_xgW5fzFwRTQqHKBi-K9ycFmUn2R-r0FKNa393-B_vllGVH1gQfY7DtH1sAq0ML__4ddWhhNbdwLnvz2NK_RXPP0p-QNe2M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21038538</pqid></control><display><type>article</type><title>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Lu, Shaoying ; Ouyang, Mingxing ; Seong, Jihye ; Zhang, Jin ; Chien, Shu ; Wang, Yingxiao</creator><contributor>Butler, Peter J.</contributor><creatorcontrib>Lu, Shaoying ; Ouyang, Mingxing ; Seong, Jihye ; Zhang, Jin ; Chien, Shu ; Wang, Yingxiao ; Butler, Peter J.</creatorcontrib><description>Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000127</identifier><identifier>PMID: 18711637</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biochemistry/Bioinformatics ; Biophysics/Cell Signaling and Trafficking Structures ; Biosensing Techniques ; Biosensors ; Biotechnology/Bioengineering ; Cancer ; Cell Biology/Cell Signaling ; Cellular signal transduction ; Computational Biology/Systems Biology ; Computer Simulation ; Confidence intervals ; Diffusion ; Epidermal growth factor ; Fluorescence Resonance Energy Transfer ; Genetic aspects ; Kinases ; Lipids ; Lipids - chemistry ; Physiological aspects ; Protein tyrosine kinase ; Proteins ; Proto-Oncogene Proteins pp60(c-src) - metabolism ; Statistical analysis</subject><ispartof>PLoS computational biology, 2008-07, Vol.4 (7), p.e1000127-e1000127</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Lu et al. 2008</rights><rights>2008 Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lu S, Ouyang M, Seong J, Zhang J, Chien S, et al. (2008) The Spatiotemporal Pattern of Src Activation at Lipid Rafts Revealed by Diffusion-Corrected FRET Imaging. PLoS Comput Biol 4(7): e1000127. doi:10.1371/journal.pcbi.1000127</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</citedby><cites>FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517613/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517613/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18711637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butler, Peter J.</contributor><creatorcontrib>Lu, Shaoying</creatorcontrib><creatorcontrib>Ouyang, Mingxing</creatorcontrib><creatorcontrib>Seong, Jihye</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><title>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.</description><subject>Biochemistry/Bioinformatics</subject><subject>Biophysics/Cell Signaling and Trafficking Structures</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology/Bioengineering</subject><subject>Cancer</subject><subject>Cell Biology/Cell Signaling</subject><subject>Cellular signal transduction</subject><subject>Computational Biology/Systems Biology</subject><subject>Computer Simulation</subject><subject>Confidence intervals</subject><subject>Diffusion</subject><subject>Epidermal growth factor</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Genetic aspects</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Physiological aspects</subject><subject>Protein tyrosine kinase</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins pp60(c-src) - metabolism</subject><subject>Statistical analysis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1v0zAUhiMEYqPwDxD4ComLFh9_xblBmqYNKk0gbeXachwn9ZTGwXYq9u9xaYD1CiFL9vHxc15br09RvAa8AlrCh3s_hUH3q9HUbgUYYyDlk-IcOKfLknL59FF8VryI8R7jHFbieXEGsgQQtDwvtputRXHUyflkd6MPukd5l2wYkG_RXTBIm-T2B2BAOqHeja5BQbcpomD3Vve2QfUDalzbTjFDS-NDsCbl9PXt1Qa5ne7c0L0snrW6j_bVvC6Kb9dXm8vPy5uvn9aXFzdLU2Kclk1lJIYSQ103FhshKBNCEsZbXZImT5SVggJhIKmppJC8JpTjusbaGjCaLoq3R92x91HNJkUFFBjHggPJxPpINF7fqzHkB4YH5bVTvxI-dEqH5ExvFdTcgBSVNowxo7WmpgYiJCZSklbIrPVxvm2qd7YxdkjZwRPR05PBbVXn94pwKAXQLPBuFgj--2RjUjsXje17PVg_RSUqxggw_E-QAKaS08OTVkewy1-j3ND6fLHJo7E7Z_xgW5fzFwRTQqHKBi-K9ycFmUn2R-r0FKNa393-B_vllGVH1gQfY7DtH1sAq0ML__4ddWhhNbdwLnvz2NK_RXPP0p-QNe2M</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Lu, Shaoying</creator><creator>Ouyang, Mingxing</creator><creator>Seong, Jihye</creator><creator>Zhang, Jin</creator><creator>Chien, Shu</creator><creator>Wang, Yingxiao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080701</creationdate><title>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</title><author>Lu, Shaoying ; Ouyang, Mingxing ; Seong, Jihye ; Zhang, Jin ; Chien, Shu ; Wang, Yingxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biochemistry/Bioinformatics</topic><topic>Biophysics/Cell Signaling and Trafficking Structures</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology/Bioengineering</topic><topic>Cancer</topic><topic>Cell Biology/Cell Signaling</topic><topic>Cellular signal transduction</topic><topic>Computational Biology/Systems Biology</topic><topic>Computer Simulation</topic><topic>Confidence intervals</topic><topic>Diffusion</topic><topic>Epidermal growth factor</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Genetic aspects</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Physiological aspects</topic><topic>Protein tyrosine kinase</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins pp60(c-src) - metabolism</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shaoying</creatorcontrib><creatorcontrib>Ouyang, Mingxing</creatorcontrib><creatorcontrib>Seong, Jihye</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shaoying</au><au>Ouyang, Mingxing</au><au>Seong, Jihye</au><au>Zhang, Jin</au><au>Chien, Shu</au><au>Wang, Yingxiao</au><au>Butler, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>4</volume><issue>7</issue><spage>e1000127</spage><epage>e1000127</epage><pages>e1000127-e1000127</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18711637</pmid><doi>10.1371/journal.pcbi.1000127</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2008-07, Vol.4 (7), p.e1000127-e1000127
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1314506512
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Biochemistry/Bioinformatics
Biophysics/Cell Signaling and Trafficking Structures
Biosensing Techniques
Biosensors
Biotechnology/Bioengineering
Cancer
Cell Biology/Cell Signaling
Cellular signal transduction
Computational Biology/Systems Biology
Computer Simulation
Confidence intervals
Diffusion
Epidermal growth factor
Fluorescence Resonance Energy Transfer
Genetic aspects
Kinases
Lipids
Lipids - chemistry
Physiological aspects
Protein tyrosine kinase
Proteins
Proto-Oncogene Proteins pp60(c-src) - metabolism
Statistical analysis
title The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatiotemporal%20pattern%20of%20Src%20activation%20at%20lipid%20rafts%20revealed%20by%20diffusion-corrected%20FRET%20imaging&rft.jtitle=PLoS%20computational%20biology&rft.au=Lu,%20Shaoying&rft.date=2008-07-01&rft.volume=4&rft.issue=7&rft.spage=e1000127&rft.epage=e1000127&rft.pages=e1000127-e1000127&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000127&rft_dat=%3Cgale_plos_%3EA203231966%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21038538&rft_id=info:pmid/18711637&rft_galeid=A203231966&rft_doaj_id=oai_doaj_org_article_1b5c1869ac444caaa3cb126802882f68&rfr_iscdi=true