The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual mole...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2008-07, Vol.4 (7), p.e1000127-e1000127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000127 |
---|---|
container_issue | 7 |
container_start_page | e1000127 |
container_title | PLoS computational biology |
container_volume | 4 |
creator | Lu, Shaoying Ouyang, Mingxing Seong, Jihye Zhang, Jin Chien, Shu Wang, Yingxiao |
description | Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells. |
doi_str_mv | 10.1371/journal.pcbi.1000127 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314506512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A203231966</galeid><doaj_id>oai_doaj_org_article_1b5c1869ac444caaa3cb126802882f68</doaj_id><sourcerecordid>A203231966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</originalsourceid><addsrcrecordid>eNqVkl1v0zAUhiMEYqPwDxD4ComLFh9_xblBmqYNKk0gbeXachwn9ZTGwXYq9u9xaYD1CiFL9vHxc15br09RvAa8AlrCh3s_hUH3q9HUbgUYYyDlk-IcOKfLknL59FF8VryI8R7jHFbieXEGsgQQtDwvtputRXHUyflkd6MPukd5l2wYkG_RXTBIm-T2B2BAOqHeja5BQbcpomD3Vve2QfUDalzbTjFDS-NDsCbl9PXt1Qa5ne7c0L0snrW6j_bVvC6Kb9dXm8vPy5uvn9aXFzdLU2Kclk1lJIYSQ103FhshKBNCEsZbXZImT5SVggJhIKmppJC8JpTjusbaGjCaLoq3R92x91HNJkUFFBjHggPJxPpINF7fqzHkB4YH5bVTvxI-dEqH5ExvFdTcgBSVNowxo7WmpgYiJCZSklbIrPVxvm2qd7YxdkjZwRPR05PBbVXn94pwKAXQLPBuFgj--2RjUjsXje17PVg_RSUqxggw_E-QAKaS08OTVkewy1-j3ND6fLHJo7E7Z_xgW5fzFwRTQqHKBi-K9ycFmUn2R-r0FKNa393-B_vllGVH1gQfY7DtH1sAq0ML__4ddWhhNbdwLnvz2NK_RXPP0p-QNe2M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21038538</pqid></control><display><type>article</type><title>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Lu, Shaoying ; Ouyang, Mingxing ; Seong, Jihye ; Zhang, Jin ; Chien, Shu ; Wang, Yingxiao</creator><contributor>Butler, Peter J.</contributor><creatorcontrib>Lu, Shaoying ; Ouyang, Mingxing ; Seong, Jihye ; Zhang, Jin ; Chien, Shu ; Wang, Yingxiao ; Butler, Peter J.</creatorcontrib><description>Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000127</identifier><identifier>PMID: 18711637</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biochemistry/Bioinformatics ; Biophysics/Cell Signaling and Trafficking Structures ; Biosensing Techniques ; Biosensors ; Biotechnology/Bioengineering ; Cancer ; Cell Biology/Cell Signaling ; Cellular signal transduction ; Computational Biology/Systems Biology ; Computer Simulation ; Confidence intervals ; Diffusion ; Epidermal growth factor ; Fluorescence Resonance Energy Transfer ; Genetic aspects ; Kinases ; Lipids ; Lipids - chemistry ; Physiological aspects ; Protein tyrosine kinase ; Proteins ; Proto-Oncogene Proteins pp60(c-src) - metabolism ; Statistical analysis</subject><ispartof>PLoS computational biology, 2008-07, Vol.4 (7), p.e1000127-e1000127</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Lu et al. 2008</rights><rights>2008 Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lu S, Ouyang M, Seong J, Zhang J, Chien S, et al. (2008) The Spatiotemporal Pattern of Src Activation at Lipid Rafts Revealed by Diffusion-Corrected FRET Imaging. PLoS Comput Biol 4(7): e1000127. doi:10.1371/journal.pcbi.1000127</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</citedby><cites>FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517613/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517613/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18711637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butler, Peter J.</contributor><creatorcontrib>Lu, Shaoying</creatorcontrib><creatorcontrib>Ouyang, Mingxing</creatorcontrib><creatorcontrib>Seong, Jihye</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><title>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.</description><subject>Biochemistry/Bioinformatics</subject><subject>Biophysics/Cell Signaling and Trafficking Structures</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology/Bioengineering</subject><subject>Cancer</subject><subject>Cell Biology/Cell Signaling</subject><subject>Cellular signal transduction</subject><subject>Computational Biology/Systems Biology</subject><subject>Computer Simulation</subject><subject>Confidence intervals</subject><subject>Diffusion</subject><subject>Epidermal growth factor</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Genetic aspects</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Physiological aspects</subject><subject>Protein tyrosine kinase</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins pp60(c-src) - metabolism</subject><subject>Statistical analysis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1v0zAUhiMEYqPwDxD4ComLFh9_xblBmqYNKk0gbeXachwn9ZTGwXYq9u9xaYD1CiFL9vHxc15br09RvAa8AlrCh3s_hUH3q9HUbgUYYyDlk-IcOKfLknL59FF8VryI8R7jHFbieXEGsgQQtDwvtputRXHUyflkd6MPukd5l2wYkG_RXTBIm-T2B2BAOqHeja5BQbcpomD3Vve2QfUDalzbTjFDS-NDsCbl9PXt1Qa5ne7c0L0snrW6j_bVvC6Kb9dXm8vPy5uvn9aXFzdLU2Kclk1lJIYSQ103FhshKBNCEsZbXZImT5SVggJhIKmppJC8JpTjusbaGjCaLoq3R92x91HNJkUFFBjHggPJxPpINF7fqzHkB4YH5bVTvxI-dEqH5ExvFdTcgBSVNowxo7WmpgYiJCZSklbIrPVxvm2qd7YxdkjZwRPR05PBbVXn94pwKAXQLPBuFgj--2RjUjsXje17PVg_RSUqxggw_E-QAKaS08OTVkewy1-j3ND6fLHJo7E7Z_xgW5fzFwRTQqHKBi-K9ycFmUn2R-r0FKNa393-B_vllGVH1gQfY7DtH1sAq0ML__4ddWhhNbdwLnvz2NK_RXPP0p-QNe2M</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Lu, Shaoying</creator><creator>Ouyang, Mingxing</creator><creator>Seong, Jihye</creator><creator>Zhang, Jin</creator><creator>Chien, Shu</creator><creator>Wang, Yingxiao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080701</creationdate><title>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</title><author>Lu, Shaoying ; Ouyang, Mingxing ; Seong, Jihye ; Zhang, Jin ; Chien, Shu ; Wang, Yingxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c700t-d9c801701bbde0c6634668245fa72dfa734763124183c98685b2350bb0aec1ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biochemistry/Bioinformatics</topic><topic>Biophysics/Cell Signaling and Trafficking Structures</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology/Bioengineering</topic><topic>Cancer</topic><topic>Cell Biology/Cell Signaling</topic><topic>Cellular signal transduction</topic><topic>Computational Biology/Systems Biology</topic><topic>Computer Simulation</topic><topic>Confidence intervals</topic><topic>Diffusion</topic><topic>Epidermal growth factor</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Genetic aspects</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Physiological aspects</topic><topic>Protein tyrosine kinase</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins pp60(c-src) - metabolism</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shaoying</creatorcontrib><creatorcontrib>Ouyang, Mingxing</creatorcontrib><creatorcontrib>Seong, Jihye</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shaoying</au><au>Ouyang, Mingxing</au><au>Seong, Jihye</au><au>Zhang, Jin</au><au>Chien, Shu</au><au>Wang, Yingxiao</au><au>Butler, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>4</volume><issue>7</issue><spage>e1000127</spage><epage>e1000127</epage><pages>e1000127-e1000127</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18711637</pmid><doi>10.1371/journal.pcbi.1000127</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2008-07, Vol.4 (7), p.e1000127-e1000127 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1314506512 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Biochemistry/Bioinformatics Biophysics/Cell Signaling and Trafficking Structures Biosensing Techniques Biosensors Biotechnology/Bioengineering Cancer Cell Biology/Cell Signaling Cellular signal transduction Computational Biology/Systems Biology Computer Simulation Confidence intervals Diffusion Epidermal growth factor Fluorescence Resonance Energy Transfer Genetic aspects Kinases Lipids Lipids - chemistry Physiological aspects Protein tyrosine kinase Proteins Proto-Oncogene Proteins pp60(c-src) - metabolism Statistical analysis |
title | The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatiotemporal%20pattern%20of%20Src%20activation%20at%20lipid%20rafts%20revealed%20by%20diffusion-corrected%20FRET%20imaging&rft.jtitle=PLoS%20computational%20biology&rft.au=Lu,%20Shaoying&rft.date=2008-07-01&rft.volume=4&rft.issue=7&rft.spage=e1000127&rft.epage=e1000127&rft.pages=e1000127-e1000127&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000127&rft_dat=%3Cgale_plos_%3EA203231966%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21038538&rft_id=info:pmid/18711637&rft_galeid=A203231966&rft_doaj_id=oai_doaj_org_article_1b5c1869ac444caaa3cb126802882f68&rfr_iscdi=true |