The generation of promoter-mediated transcriptional noise in bacteria

Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2008-07, Vol.4 (7), p.e1000109-e1000109
Hauptverfasser: Mitarai, Namiko, Dodd, Ian B, Crooks, Michael T, Sneppen, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000109
container_issue 7
container_start_page e1000109
container_title PLoS computational biology
container_volume 4
creator Mitarai, Namiko
Dodd, Ian B
Crooks, Michael T
Sneppen, Kim
description Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.
doi_str_mv 10.1371/journal.pcbi.1000109
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1314506293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_761c6cde01e74e7b8ae5965a55a84f3e</doaj_id><sourcerecordid>69313994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEog_4BwiyYpfB79gbJFQVqFSJTVlbN8711KOMHewMEv8eDxNou2LlK_u759rHp2neULKhvKcfdumQI0yb2Q1hQwkhlJhnzTmVknc9l_r5o_qsuShlR0gtjXrZnFGtaG-MOW-u7-6x3WLEDEtIsU2-nXPapwVzt8cxwIJju2SIxeUwHxGY2phCwTbEdgBXwQCvmhcepoKv1_Wy-f75-u7qa3f77cvN1afbzknWL53xTApljBxc76UU2o89-NFoZISPhIDTUgsnkArPBTDmkSghiFYaRikHftm8O-nOUyp2daBYyqmQRDHDK3FzIsYEOzvnsIf8yyYI9s9GylsLeQluQtsr6pQbkVDsBfaDBpRGSZASdJ2PVevjOu0wVC8cxmrE9ET06UkM93abflomBGPUVIH3q0BOPw5YFrsPxeE0QcR0KFYZTrkx4r8gI0QeP7iC4gS6nErJ6P_dhhJ7jMVfU-wxFnaNRW17-_glD01rDvhvNte21w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20050010</pqid></control><display><type>article</type><title>The generation of promoter-mediated transcriptional noise in bacteria</title><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Public Library of Science</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><creator>Mitarai, Namiko ; Dodd, Ian B ; Crooks, Michael T ; Sneppen, Kim</creator><contributor>Margalit, Hanah</contributor><creatorcontrib>Mitarai, Namiko ; Dodd, Ian B ; Crooks, Michael T ; Sneppen, Kim ; Margalit, Hanah</creatorcontrib><description>Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000109</identifier><identifier>PMID: 18617999</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding sites ; Biochemistry/Transcription and Translation ; Biophysics/Theory and Simulation ; Biophysics/Transcription and Translation ; Computational Biology/Transcriptional Regulation ; DNA, Superhelical - metabolism ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression Regulation, Bacterial ; Hypotheses ; Kinetics ; Mathematical models ; Models, Genetic ; Promoter Regions, Genetic - genetics ; RNA polymerase ; Studies ; Time series ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>PLoS computational biology, 2008-07, Vol.4 (7), p.e1000109-e1000109</ispartof><rights>Mitarai et al. 2008</rights><rights>2008 Mitarai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mitarai N, Dodd IB, Crooks MT, Sneppen K (2008) The Generation of Promoter-Mediated Transcriptional Noise in Bacteria. PLoS Comput Biol 4(7): e1000109. doi:10.1371/journal.pcbi.1000109</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</citedby><cites>FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18617999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Margalit, Hanah</contributor><creatorcontrib>Mitarai, Namiko</creatorcontrib><creatorcontrib>Dodd, Ian B</creatorcontrib><creatorcontrib>Crooks, Michael T</creatorcontrib><creatorcontrib>Sneppen, Kim</creatorcontrib><title>The generation of promoter-mediated transcriptional noise in bacteria</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.</description><subject>Binding sites</subject><subject>Biochemistry/Transcription and Translation</subject><subject>Biophysics/Theory and Simulation</subject><subject>Biophysics/Transcription and Translation</subject><subject>Computational Biology/Transcriptional Regulation</subject><subject>DNA, Superhelical - metabolism</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hypotheses</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>RNA polymerase</subject><subject>Studies</subject><subject>Time series</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEog_4BwiyYpfB79gbJFQVqFSJTVlbN8711KOMHewMEv8eDxNou2LlK_u759rHp2neULKhvKcfdumQI0yb2Q1hQwkhlJhnzTmVknc9l_r5o_qsuShlR0gtjXrZnFGtaG-MOW-u7-6x3WLEDEtIsU2-nXPapwVzt8cxwIJju2SIxeUwHxGY2phCwTbEdgBXwQCvmhcepoKv1_Wy-f75-u7qa3f77cvN1afbzknWL53xTApljBxc76UU2o89-NFoZISPhIDTUgsnkArPBTDmkSghiFYaRikHftm8O-nOUyp2daBYyqmQRDHDK3FzIsYEOzvnsIf8yyYI9s9GylsLeQluQtsr6pQbkVDsBfaDBpRGSZASdJ2PVevjOu0wVC8cxmrE9ET06UkM93abflomBGPUVIH3q0BOPw5YFrsPxeE0QcR0KFYZTrkx4r8gI0QeP7iC4gS6nErJ6P_dhhJ7jMVfU-wxFnaNRW17-_glD01rDvhvNte21w</recordid><startdate>20080711</startdate><enddate>20080711</enddate><creator>Mitarai, Namiko</creator><creator>Dodd, Ian B</creator><creator>Crooks, Michael T</creator><creator>Sneppen, Kim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080711</creationdate><title>The generation of promoter-mediated transcriptional noise in bacteria</title><author>Mitarai, Namiko ; Dodd, Ian B ; Crooks, Michael T ; Sneppen, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binding sites</topic><topic>Biochemistry/Transcription and Translation</topic><topic>Biophysics/Theory and Simulation</topic><topic>Biophysics/Transcription and Translation</topic><topic>Computational Biology/Transcriptional Regulation</topic><topic>DNA, Superhelical - metabolism</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hypotheses</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>RNA polymerase</topic><topic>Studies</topic><topic>Time series</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitarai, Namiko</creatorcontrib><creatorcontrib>Dodd, Ian B</creatorcontrib><creatorcontrib>Crooks, Michael T</creatorcontrib><creatorcontrib>Sneppen, Kim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitarai, Namiko</au><au>Dodd, Ian B</au><au>Crooks, Michael T</au><au>Sneppen, Kim</au><au>Margalit, Hanah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The generation of promoter-mediated transcriptional noise in bacteria</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2008-07-11</date><risdate>2008</risdate><volume>4</volume><issue>7</issue><spage>e1000109</spage><epage>e1000109</epage><pages>e1000109-e1000109</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18617999</pmid><doi>10.1371/journal.pcbi.1000109</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2008-07, Vol.4 (7), p.e1000109-e1000109
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1314506293
source MEDLINE; Directory of Open Access Journals; Public Library of Science; Free E-Journal (出版社公開部分のみ); PubMed Central
subjects Binding sites
Biochemistry/Transcription and Translation
Biophysics/Theory and Simulation
Biophysics/Transcription and Translation
Computational Biology/Transcriptional Regulation
DNA, Superhelical - metabolism
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
E coli
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression Regulation, Bacterial
Hypotheses
Kinetics
Mathematical models
Models, Genetic
Promoter Regions, Genetic - genetics
RNA polymerase
Studies
Time series
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title The generation of promoter-mediated transcriptional noise in bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20generation%20of%20promoter-mediated%20transcriptional%20noise%20in%20bacteria&rft.jtitle=PLoS%20computational%20biology&rft.au=Mitarai,%20Namiko&rft.date=2008-07-11&rft.volume=4&rft.issue=7&rft.spage=e1000109&rft.epage=e1000109&rft.pages=e1000109-e1000109&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000109&rft_dat=%3Cproquest_plos_%3E69313994%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20050010&rft_id=info:pmid/18617999&rft_doaj_id=oai_doaj_org_article_761c6cde01e74e7b8ae5965a55a84f3e&rfr_iscdi=true