The generation of promoter-mediated transcriptional noise in bacteria
Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary press...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2008-07, Vol.4 (7), p.e1000109-e1000109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000109 |
---|---|
container_issue | 7 |
container_start_page | e1000109 |
container_title | PLoS computational biology |
container_volume | 4 |
creator | Mitarai, Namiko Dodd, Ian B Crooks, Michael T Sneppen, Kim |
description | Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise. |
doi_str_mv | 10.1371/journal.pcbi.1000109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1314506293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_761c6cde01e74e7b8ae5965a55a84f3e</doaj_id><sourcerecordid>69313994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEog_4BwiyYpfB79gbJFQVqFSJTVlbN8711KOMHewMEv8eDxNou2LlK_u759rHp2neULKhvKcfdumQI0yb2Q1hQwkhlJhnzTmVknc9l_r5o_qsuShlR0gtjXrZnFGtaG-MOW-u7-6x3WLEDEtIsU2-nXPapwVzt8cxwIJju2SIxeUwHxGY2phCwTbEdgBXwQCvmhcepoKv1_Wy-f75-u7qa3f77cvN1afbzknWL53xTApljBxc76UU2o89-NFoZISPhIDTUgsnkArPBTDmkSghiFYaRikHftm8O-nOUyp2daBYyqmQRDHDK3FzIsYEOzvnsIf8yyYI9s9GylsLeQluQtsr6pQbkVDsBfaDBpRGSZASdJ2PVevjOu0wVC8cxmrE9ET06UkM93abflomBGPUVIH3q0BOPw5YFrsPxeE0QcR0KFYZTrkx4r8gI0QeP7iC4gS6nErJ6P_dhhJ7jMVfU-wxFnaNRW17-_glD01rDvhvNte21w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20050010</pqid></control><display><type>article</type><title>The generation of promoter-mediated transcriptional noise in bacteria</title><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Public Library of Science</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><creator>Mitarai, Namiko ; Dodd, Ian B ; Crooks, Michael T ; Sneppen, Kim</creator><contributor>Margalit, Hanah</contributor><creatorcontrib>Mitarai, Namiko ; Dodd, Ian B ; Crooks, Michael T ; Sneppen, Kim ; Margalit, Hanah</creatorcontrib><description>Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000109</identifier><identifier>PMID: 18617999</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding sites ; Biochemistry/Transcription and Translation ; Biophysics/Theory and Simulation ; Biophysics/Transcription and Translation ; Computational Biology/Transcriptional Regulation ; DNA, Superhelical - metabolism ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression Regulation, Bacterial ; Hypotheses ; Kinetics ; Mathematical models ; Models, Genetic ; Promoter Regions, Genetic - genetics ; RNA polymerase ; Studies ; Time series ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>PLoS computational biology, 2008-07, Vol.4 (7), p.e1000109-e1000109</ispartof><rights>Mitarai et al. 2008</rights><rights>2008 Mitarai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mitarai N, Dodd IB, Crooks MT, Sneppen K (2008) The Generation of Promoter-Mediated Transcriptional Noise in Bacteria. PLoS Comput Biol 4(7): e1000109. doi:10.1371/journal.pcbi.1000109</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</citedby><cites>FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18617999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Margalit, Hanah</contributor><creatorcontrib>Mitarai, Namiko</creatorcontrib><creatorcontrib>Dodd, Ian B</creatorcontrib><creatorcontrib>Crooks, Michael T</creatorcontrib><creatorcontrib>Sneppen, Kim</creatorcontrib><title>The generation of promoter-mediated transcriptional noise in bacteria</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.</description><subject>Binding sites</subject><subject>Biochemistry/Transcription and Translation</subject><subject>Biophysics/Theory and Simulation</subject><subject>Biophysics/Transcription and Translation</subject><subject>Computational Biology/Transcriptional Regulation</subject><subject>DNA, Superhelical - metabolism</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hypotheses</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>RNA polymerase</subject><subject>Studies</subject><subject>Time series</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEog_4BwiyYpfB79gbJFQVqFSJTVlbN8711KOMHewMEv8eDxNou2LlK_u759rHp2neULKhvKcfdumQI0yb2Q1hQwkhlJhnzTmVknc9l_r5o_qsuShlR0gtjXrZnFGtaG-MOW-u7-6x3WLEDEtIsU2-nXPapwVzt8cxwIJju2SIxeUwHxGY2phCwTbEdgBXwQCvmhcepoKv1_Wy-f75-u7qa3f77cvN1afbzknWL53xTApljBxc76UU2o89-NFoZISPhIDTUgsnkArPBTDmkSghiFYaRikHftm8O-nOUyp2daBYyqmQRDHDK3FzIsYEOzvnsIf8yyYI9s9GylsLeQluQtsr6pQbkVDsBfaDBpRGSZASdJ2PVevjOu0wVC8cxmrE9ET06UkM93abflomBGPUVIH3q0BOPw5YFrsPxeE0QcR0KFYZTrkx4r8gI0QeP7iC4gS6nErJ6P_dhhJ7jMVfU-wxFnaNRW17-_glD01rDvhvNte21w</recordid><startdate>20080711</startdate><enddate>20080711</enddate><creator>Mitarai, Namiko</creator><creator>Dodd, Ian B</creator><creator>Crooks, Michael T</creator><creator>Sneppen, Kim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080711</creationdate><title>The generation of promoter-mediated transcriptional noise in bacteria</title><author>Mitarai, Namiko ; Dodd, Ian B ; Crooks, Michael T ; Sneppen, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-9f2546995bc7f5548fd7afd98e203d00ac8584c4e14f34a22fe06440868ad55b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binding sites</topic><topic>Biochemistry/Transcription and Translation</topic><topic>Biophysics/Theory and Simulation</topic><topic>Biophysics/Transcription and Translation</topic><topic>Computational Biology/Transcriptional Regulation</topic><topic>DNA, Superhelical - metabolism</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hypotheses</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>RNA polymerase</topic><topic>Studies</topic><topic>Time series</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitarai, Namiko</creatorcontrib><creatorcontrib>Dodd, Ian B</creatorcontrib><creatorcontrib>Crooks, Michael T</creatorcontrib><creatorcontrib>Sneppen, Kim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitarai, Namiko</au><au>Dodd, Ian B</au><au>Crooks, Michael T</au><au>Sneppen, Kim</au><au>Margalit, Hanah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The generation of promoter-mediated transcriptional noise in bacteria</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2008-07-11</date><risdate>2008</risdate><volume>4</volume><issue>7</issue><spage>e1000109</spage><epage>e1000109</epage><pages>e1000109-e1000109</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18617999</pmid><doi>10.1371/journal.pcbi.1000109</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2008-07, Vol.4 (7), p.e1000109-e1000109 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1314506293 |
source | MEDLINE; Directory of Open Access Journals; Public Library of Science; Free E-Journal (出版社公開部分のみ); PubMed Central |
subjects | Binding sites Biochemistry/Transcription and Translation Biophysics/Theory and Simulation Biophysics/Transcription and Translation Computational Biology/Transcriptional Regulation DNA, Superhelical - metabolism DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism E coli Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Regulation, Bacterial Hypotheses Kinetics Mathematical models Models, Genetic Promoter Regions, Genetic - genetics RNA polymerase Studies Time series Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | The generation of promoter-mediated transcriptional noise in bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20generation%20of%20promoter-mediated%20transcriptional%20noise%20in%20bacteria&rft.jtitle=PLoS%20computational%20biology&rft.au=Mitarai,%20Namiko&rft.date=2008-07-11&rft.volume=4&rft.issue=7&rft.spage=e1000109&rft.epage=e1000109&rft.pages=e1000109-e1000109&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000109&rft_dat=%3Cproquest_plos_%3E69313994%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20050010&rft_id=info:pmid/18617999&rft_doaj_id=oai_doaj_org_article_761c6cde01e74e7b8ae5965a55a84f3e&rfr_iscdi=true |