Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum
Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2007-11, Vol.3 (11), p.e230 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e230 |
container_title | PLoS computational biology |
container_volume | 3 |
creator | Ratmann, Oliver Jørgensen, Ole Hinkley, Trevor Stumpf, Michael Richardson, Sylvia Wiuf, Carsten |
description | Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We developed a novel, model-based approach for Bayesian inference on biological network data that centres on approximate Bayesian computation, or likelihood-free inference. Instead of computing the intractable likelihood of the protein network topology, our method summarizes key features of the network and, based on these, uses a MCMC algorithm to approximate the posterior distribution of the model parameters. This allowed us to reliably fit a flexible mixture model that captures hallmarks of evolution by gene duplication and subfunctionalization to protein interaction network data of Helicobacter pylori and Plasmodium falciparum. The 80% credible intervals for the duplication-divergence component are [0.64, 0.98] for H. pylori and [0.87, 0.99] for P. falciparum. The remaining parameter estimates are not inconsistent with sequence data. An extensive sensitivity analysis showed that incompleteness of PIN data does not largely affect the analysis of models of protein network evolution, and that the degree sequence alone barely captures the evolutionary footprints of protein networks relative to other statistics. Our likelihood-free inference approach enables a fully Bayesian analysis of a complex and highly stochastic system that is otherwise intractable at present. Modelling the evolutionary history of PIN data, it transpires that only the simultaneous analysis of several global aspects of protein networks enables credible and consistent inference to be made from available datasets. Our results indicate that gene duplication has played a larger part in the network evolution of the eukaryote than in the prokaryote, and suggests that single gene duplications with immediate divergence alone may explain more than 60% of biological network data in both domains. |
doi_str_mv | 10.1371/journal.pcbi.0030230 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314383840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A203232005</galeid><doaj_id>oai_doaj_org_article_238978a6b37e4c6290f9c6985fbccd42</doaj_id><sourcerecordid>A203232005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631t-74febff6a12dccb8f6a9677fef4f689a66059f90883aeb55c169afb2a2549ab93</originalsourceid><addsrcrecordid>eNqVUsFu1DAQjRCIlsIfILDEicMGx44T-4JUVUBXqgABPVuOM971NmunttOyf4_bDdA9cEA-eDx-73nG84riZYXLirbVu42fglNDOerOlhhTTCh-VBxXjNFFSxl__CA-Kp7FuMkgxkXztDiqOGaEUX5c3F5G61ZosFcw2LX3_cIEAGSdgQBOA0oeab8dVQAEN36YkvVOhR3qd05trY7IG5TWgMbgE1iHHKRbH67u8-clGneDDxYp16OvJTJq0DZrTdvnxZN8iPBi3k-Ky48ffpydLy6-fFqenV4sdEOrtGhrA50xjapIr3XHcySatjVgatNwoZoGM2EE5pwq6BjTVSOU6YgirBaqE_SkeL3XHQcf5fxnUVa0qimnvMYZsdwjeq82cgx2m9uTXll5n_BhJVVIVg8gCeWi5arpaAu1bojARuhGcGY6rfuaZK3382tTt4Veg0tBDQeihzfOruXK30iCBeeMZ4E3s0Dw1xPE9I-Syz1qpXJVeVY-i-m8esgj8Q6MzflTgimhBGOWCW8PCBmT4GdaqSlGufz-7T-wnw-x9R6rg48xgPnTaoXlnUt_ly_vXCpnl2baq4ff9Jc025L-AkgQ5bo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314383840</pqid></control><display><type>article</type><title>Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ratmann, Oliver ; Jørgensen, Ole ; Hinkley, Trevor ; Stumpf, Michael ; Richardson, Sylvia ; Wiuf, Carsten</creator><creatorcontrib>Ratmann, Oliver ; Jørgensen, Ole ; Hinkley, Trevor ; Stumpf, Michael ; Richardson, Sylvia ; Wiuf, Carsten</creatorcontrib><description>Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We developed a novel, model-based approach for Bayesian inference on biological network data that centres on approximate Bayesian computation, or likelihood-free inference. Instead of computing the intractable likelihood of the protein network topology, our method summarizes key features of the network and, based on these, uses a MCMC algorithm to approximate the posterior distribution of the model parameters. This allowed us to reliably fit a flexible mixture model that captures hallmarks of evolution by gene duplication and subfunctionalization to protein interaction network data of Helicobacter pylori and Plasmodium falciparum. The 80% credible intervals for the duplication-divergence component are [0.64, 0.98] for H. pylori and [0.87, 0.99] for P. falciparum. The remaining parameter estimates are not inconsistent with sequence data. An extensive sensitivity analysis showed that incompleteness of PIN data does not largely affect the analysis of models of protein network evolution, and that the degree sequence alone barely captures the evolutionary footprints of protein networks relative to other statistics. Our likelihood-free inference approach enables a fully Bayesian analysis of a complex and highly stochastic system that is otherwise intractable at present. Modelling the evolutionary history of PIN data, it transpires that only the simultaneous analysis of several global aspects of protein networks enables credible and consistent inference to be made from available datasets. Our results indicate that gene duplication has played a larger part in the network evolution of the eukaryote than in the prokaryote, and suggests that single gene duplications with immediate divergence alone may explain more than 60% of biological network data in both domains.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.0030230</identifier><identifier>PMID: 18052538</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bacterial Proteins - genetics ; Biological Evolution ; Computational Biology ; Councils ; Eubacteria ; Evolution ; Evolution, Molecular ; Evolutionary Biology ; Gene Duplication ; Genes ; Genetic Variation - genetics ; Genetics ; Helicobacter pylori - genetics ; Likelihood Functions ; Mathematics ; Models, Genetic ; Models, Statistical ; Mutation ; Plasmodium ; Plasmodium falciparum - genetics ; Proteins ; Protozoan Proteins - genetics ; Sensitivity analysis ; Signal Transduction - genetics ; Stochastic models ; Studies</subject><ispartof>PLoS computational biology, 2007-11, Vol.3 (11), p.e230</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Ratmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ratmann O, Jørgensen O, Hinkley T, Stumpf M, Richardson S, et al. (2007) Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum. PLoS Comput Biol 3(11): e230. doi:10.1371/journal.pcbi.0030230</rights><rights>2007 Ratmann et al. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c631t-74febff6a12dccb8f6a9677fef4f689a66059f90883aeb55c169afb2a2549ab93</citedby><cites>FETCH-LOGICAL-c631t-74febff6a12dccb8f6a9677fef4f689a66059f90883aeb55c169afb2a2549ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2098858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2098858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18052538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratmann, Oliver</creatorcontrib><creatorcontrib>Jørgensen, Ole</creatorcontrib><creatorcontrib>Hinkley, Trevor</creatorcontrib><creatorcontrib>Stumpf, Michael</creatorcontrib><creatorcontrib>Richardson, Sylvia</creatorcontrib><creatorcontrib>Wiuf, Carsten</creatorcontrib><title>Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We developed a novel, model-based approach for Bayesian inference on biological network data that centres on approximate Bayesian computation, or likelihood-free inference. Instead of computing the intractable likelihood of the protein network topology, our method summarizes key features of the network and, based on these, uses a MCMC algorithm to approximate the posterior distribution of the model parameters. This allowed us to reliably fit a flexible mixture model that captures hallmarks of evolution by gene duplication and subfunctionalization to protein interaction network data of Helicobacter pylori and Plasmodium falciparum. The 80% credible intervals for the duplication-divergence component are [0.64, 0.98] for H. pylori and [0.87, 0.99] for P. falciparum. The remaining parameter estimates are not inconsistent with sequence data. An extensive sensitivity analysis showed that incompleteness of PIN data does not largely affect the analysis of models of protein network evolution, and that the degree sequence alone barely captures the evolutionary footprints of protein networks relative to other statistics. Our likelihood-free inference approach enables a fully Bayesian analysis of a complex and highly stochastic system that is otherwise intractable at present. Modelling the evolutionary history of PIN data, it transpires that only the simultaneous analysis of several global aspects of protein networks enables credible and consistent inference to be made from available datasets. Our results indicate that gene duplication has played a larger part in the network evolution of the eukaryote than in the prokaryote, and suggests that single gene duplications with immediate divergence alone may explain more than 60% of biological network data in both domains.</description><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Evolution</subject><subject>Computational Biology</subject><subject>Councils</subject><subject>Eubacteria</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Gene Duplication</subject><subject>Genes</subject><subject>Genetic Variation - genetics</subject><subject>Genetics</subject><subject>Helicobacter pylori - genetics</subject><subject>Likelihood Functions</subject><subject>Mathematics</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Mutation</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum - genetics</subject><subject>Proteins</subject><subject>Protozoan Proteins - genetics</subject><subject>Sensitivity analysis</subject><subject>Signal Transduction - genetics</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVUsFu1DAQjRCIlsIfILDEicMGx44T-4JUVUBXqgABPVuOM971NmunttOyf4_bDdA9cEA-eDx-73nG84riZYXLirbVu42fglNDOerOlhhTTCh-VBxXjNFFSxl__CA-Kp7FuMkgxkXztDiqOGaEUX5c3F5G61ZosFcw2LX3_cIEAGSdgQBOA0oeab8dVQAEN36YkvVOhR3qd05trY7IG5TWgMbgE1iHHKRbH67u8-clGneDDxYp16OvJTJq0DZrTdvnxZN8iPBi3k-Ky48ffpydLy6-fFqenV4sdEOrtGhrA50xjapIr3XHcySatjVgatNwoZoGM2EE5pwq6BjTVSOU6YgirBaqE_SkeL3XHQcf5fxnUVa0qimnvMYZsdwjeq82cgx2m9uTXll5n_BhJVVIVg8gCeWi5arpaAu1bojARuhGcGY6rfuaZK3382tTt4Veg0tBDQeihzfOruXK30iCBeeMZ4E3s0Dw1xPE9I-Syz1qpXJVeVY-i-m8esgj8Q6MzflTgimhBGOWCW8PCBmT4GdaqSlGufz-7T-wnw-x9R6rg48xgPnTaoXlnUt_ly_vXCpnl2baq4ff9Jc025L-AkgQ5bo</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Ratmann, Oliver</creator><creator>Jørgensen, Ole</creator><creator>Hinkley, Trevor</creator><creator>Stumpf, Michael</creator><creator>Richardson, Sylvia</creator><creator>Wiuf, Carsten</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20071101</creationdate><title>Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum</title><author>Ratmann, Oliver ; Jørgensen, Ole ; Hinkley, Trevor ; Stumpf, Michael ; Richardson, Sylvia ; Wiuf, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631t-74febff6a12dccb8f6a9677fef4f689a66059f90883aeb55c169afb2a2549ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Evolution</topic><topic>Computational Biology</topic><topic>Councils</topic><topic>Eubacteria</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Gene Duplication</topic><topic>Genes</topic><topic>Genetic Variation - genetics</topic><topic>Genetics</topic><topic>Helicobacter pylori - genetics</topic><topic>Likelihood Functions</topic><topic>Mathematics</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Mutation</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum - genetics</topic><topic>Proteins</topic><topic>Protozoan Proteins - genetics</topic><topic>Sensitivity analysis</topic><topic>Signal Transduction - genetics</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratmann, Oliver</creatorcontrib><creatorcontrib>Jørgensen, Ole</creatorcontrib><creatorcontrib>Hinkley, Trevor</creatorcontrib><creatorcontrib>Stumpf, Michael</creatorcontrib><creatorcontrib>Richardson, Sylvia</creatorcontrib><creatorcontrib>Wiuf, Carsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratmann, Oliver</au><au>Jørgensen, Ole</au><au>Hinkley, Trevor</au><au>Stumpf, Michael</au><au>Richardson, Sylvia</au><au>Wiuf, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>3</volume><issue>11</issue><spage>e230</spage><pages>e230-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We developed a novel, model-based approach for Bayesian inference on biological network data that centres on approximate Bayesian computation, or likelihood-free inference. Instead of computing the intractable likelihood of the protein network topology, our method summarizes key features of the network and, based on these, uses a MCMC algorithm to approximate the posterior distribution of the model parameters. This allowed us to reliably fit a flexible mixture model that captures hallmarks of evolution by gene duplication and subfunctionalization to protein interaction network data of Helicobacter pylori and Plasmodium falciparum. The 80% credible intervals for the duplication-divergence component are [0.64, 0.98] for H. pylori and [0.87, 0.99] for P. falciparum. The remaining parameter estimates are not inconsistent with sequence data. An extensive sensitivity analysis showed that incompleteness of PIN data does not largely affect the analysis of models of protein network evolution, and that the degree sequence alone barely captures the evolutionary footprints of protein networks relative to other statistics. Our likelihood-free inference approach enables a fully Bayesian analysis of a complex and highly stochastic system that is otherwise intractable at present. Modelling the evolutionary history of PIN data, it transpires that only the simultaneous analysis of several global aspects of protein networks enables credible and consistent inference to be made from available datasets. Our results indicate that gene duplication has played a larger part in the network evolution of the eukaryote than in the prokaryote, and suggests that single gene duplications with immediate divergence alone may explain more than 60% of biological network data in both domains.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18052538</pmid><doi>10.1371/journal.pcbi.0030230</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2007-11, Vol.3 (11), p.e230 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1314383840 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Animals Bacterial Proteins - genetics Biological Evolution Computational Biology Councils Eubacteria Evolution Evolution, Molecular Evolutionary Biology Gene Duplication Genes Genetic Variation - genetics Genetics Helicobacter pylori - genetics Likelihood Functions Mathematics Models, Genetic Models, Statistical Mutation Plasmodium Plasmodium falciparum - genetics Proteins Protozoan Proteins - genetics Sensitivity analysis Signal Transduction - genetics Stochastic models Studies |
title | Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20likelihood-free%20inference%20to%20compare%20evolutionary%20dynamics%20of%20the%20protein%20networks%20of%20H.%20pylori%20and%20P.%20falciparum&rft.jtitle=PLoS%20computational%20biology&rft.au=Ratmann,%20Oliver&rft.date=2007-11-01&rft.volume=3&rft.issue=11&rft.spage=e230&rft.pages=e230-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.0030230&rft_dat=%3Cgale_plos_%3EA203232005%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314383840&rft_id=info:pmid/18052538&rft_galeid=A203232005&rft_doaj_id=oai_doaj_org_article_238978a6b37e4c6290f9c6985fbccd42&rfr_iscdi=true |