Discovery of a splicing regulator required for cell cycle progression
In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary...
Gespeichert in:
Veröffentlicht in: | PLoS Genetics, 9(2):Article No. e1003305 9(2):Article No. e1003305, 2013-02, Vol.9 (2), p.e1003305-e1003305 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003305 |
---|---|
container_issue | 2 |
container_start_page | e1003305 |
container_title | PLoS Genetics, 9(2):Article No. e1003305 |
container_volume | 9 |
creator | Suvorova, Elena S Croken, Matthew Kratzer, Stella Ting, Li-Min Conde de Felipe, Magnolia Balu, Bharath Markillie, Meng L Weiss, Louis M Kim, Kami White, Michael W |
description | In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms. |
doi_str_mv | 10.1371/journal.pgen.1003305 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314346664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329898904</galeid><doaj_id>oai_doaj_org_article_ff580613140941b68b2bc44ba752715d</doaj_id><sourcerecordid>A329898904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c819t-1301f3f4781d6f05a7b5e92ccbdc4a98e8877867e93a89d65fcaa2355a8be9773</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwDxBEICG4aLFjO3ZukKYxoNLEJL5uLcc5Tj2lcWc7E_33OG02tWgXIF_EcZ739fnIybLnGM0x4fj9lRt8r7r5uoV-jhEiBLEH2TFmjMw4RfTh3v4oexLCVWKYqPjj7KgglHCEquPs_KMN2t2A3-TO5CoP685q27e5h3boVHQ-7a4H66HJTXrR0HW53ugO8rV3rYcQrOufZo-M6gI8m54n2c9P5z_OvswuLj8vzk4vZlrgKs4wQdgQQ7nATWkQU7xmUBVa142mqhIgBOei5FARJaqmZEYrVRDGlKih4pycZC93vuvOBTlVIEhMMCW0LEuaiMWOaJy6kmtvV8pvpFNWbg-cb6Xy0ab4pTFMoHLUooriuhR1UWtKa8VZwTFrkteH6bahXkGjoY9edQemh196u5Stu5GE8ZRImQxe7QxciFYGbSPopXZ9DzpKjHjixojfTrd4dz1AiHKVWpLKrHpwwza5okzg1u_1X-j9JZioVqUsbW9cCk6PpvKUFJVIC43U_B4qrQZWNsUIxqbzA8G7A0FiIvyOrRpCkIvv3_6D_frv7OWvQ_bNHrsE1cVlcN0Q0z8YDkG6A7V3IXgwd13DSI7jc1s5OY6PnMYnyV7sd_xOdDsv5A_wiBJa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314346664</pqid></control><display><type>article</type><title>Discovery of a splicing regulator required for cell cycle progression</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Suvorova, Elena S ; Croken, Matthew ; Kratzer, Stella ; Ting, Li-Min ; Conde de Felipe, Magnolia ; Balu, Bharath ; Markillie, Meng L ; Weiss, Louis M ; Kim, Kami ; White, Michael W</creator><creatorcontrib>Suvorova, Elena S ; Croken, Matthew ; Kratzer, Stella ; Ting, Li-Min ; Conde de Felipe, Magnolia ; Balu, Bharath ; Markillie, Meng L ; Weiss, Louis M ; Kim, Kami ; White, Michael W ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003305</identifier><identifier>PMID: 23437009</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alternative Splicing - genetics ; Biology ; Cell ; Cell cycle ; Cell Cycle - genetics ; cell division cycle ; chromosome replication ; Chromosomes ; Colleges & universities ; Conserved Sequence - genetics ; Environmental Molecular Sciences Laboratory ; Eukaryotes ; eukaryotic ; G1 Phase - genetics ; Gene Expression Regulation ; Genetic aspects ; Genetic engineering ; Genetics ; Humans ; Medicine ; Mutation ; Nucleotide Motifs - genetics ; Parasites ; Physiological aspects ; Proteins ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Sequence Homology, Amino Acid ; splicing ; Temperature ; Toxoplasma ; Toxoplasma - genetics ; Toxoplasma - metabolism</subject><ispartof>PLoS Genetics, 9(2):Article No. e1003305, 2013-02, Vol.9 (2), p.e1003305-e1003305</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Suvorova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Suvorova ES, Croken M, Kratzer S, Ting L-M, de Felipe MC, et al. (2013) Discovery of a Splicing Regulator Required for Cell Cycle Progression. PLoS Genet 9(2): e1003305. doi:10.1371/journal.pgen.1003305</rights><rights>2013 Suvorova et al 2013 Suvorova et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c819t-1301f3f4781d6f05a7b5e92ccbdc4a98e8877867e93a89d65fcaa2355a8be9773</citedby><cites>FETCH-LOGICAL-c819t-1301f3f4781d6f05a7b5e92ccbdc4a98e8877867e93a89d65fcaa2355a8be9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578776/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578776/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23437009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1073574$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Suvorova, Elena S</creatorcontrib><creatorcontrib>Croken, Matthew</creatorcontrib><creatorcontrib>Kratzer, Stella</creatorcontrib><creatorcontrib>Ting, Li-Min</creatorcontrib><creatorcontrib>Conde de Felipe, Magnolia</creatorcontrib><creatorcontrib>Balu, Bharath</creatorcontrib><creatorcontrib>Markillie, Meng L</creatorcontrib><creatorcontrib>Weiss, Louis M</creatorcontrib><creatorcontrib>Kim, Kami</creatorcontrib><creatorcontrib>White, Michael W</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Discovery of a splicing regulator required for cell cycle progression</title><title>PLoS Genetics, 9(2):Article No. e1003305</title><addtitle>PLoS Genet</addtitle><description>In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.</description><subject>Alternative Splicing - genetics</subject><subject>Biology</subject><subject>Cell</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>cell division cycle</subject><subject>chromosome replication</subject><subject>Chromosomes</subject><subject>Colleges & universities</subject><subject>Conserved Sequence - genetics</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Eukaryotes</subject><subject>eukaryotic</subject><subject>G1 Phase - genetics</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetics</subject><subject>Humans</subject><subject>Medicine</subject><subject>Mutation</subject><subject>Nucleotide Motifs - genetics</subject><subject>Parasites</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>splicing</subject><subject>Temperature</subject><subject>Toxoplasma</subject><subject>Toxoplasma - genetics</subject><subject>Toxoplasma - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwDxBEICG4aLFjO3ZukKYxoNLEJL5uLcc5Tj2lcWc7E_33OG02tWgXIF_EcZ739fnIybLnGM0x4fj9lRt8r7r5uoV-jhEiBLEH2TFmjMw4RfTh3v4oexLCVWKYqPjj7KgglHCEquPs_KMN2t2A3-TO5CoP685q27e5h3boVHQ-7a4H66HJTXrR0HW53ugO8rV3rYcQrOufZo-M6gI8m54n2c9P5z_OvswuLj8vzk4vZlrgKs4wQdgQQ7nATWkQU7xmUBVa142mqhIgBOei5FARJaqmZEYrVRDGlKih4pycZC93vuvOBTlVIEhMMCW0LEuaiMWOaJy6kmtvV8pvpFNWbg-cb6Xy0ab4pTFMoHLUooriuhR1UWtKa8VZwTFrkteH6bahXkGjoY9edQemh196u5Stu5GE8ZRImQxe7QxciFYGbSPopXZ9DzpKjHjixojfTrd4dz1AiHKVWpLKrHpwwza5okzg1u_1X-j9JZioVqUsbW9cCk6PpvKUFJVIC43U_B4qrQZWNsUIxqbzA8G7A0FiIvyOrRpCkIvv3_6D_frv7OWvQ_bNHrsE1cVlcN0Q0z8YDkG6A7V3IXgwd13DSI7jc1s5OY6PnMYnyV7sd_xOdDsv5A_wiBJa</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Suvorova, Elena S</creator><creator>Croken, Matthew</creator><creator>Kratzer, Stella</creator><creator>Ting, Li-Min</creator><creator>Conde de Felipe, Magnolia</creator><creator>Balu, Bharath</creator><creator>Markillie, Meng L</creator><creator>Weiss, Louis M</creator><creator>Kim, Kami</creator><creator>White, Michael W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130201</creationdate><title>Discovery of a splicing regulator required for cell cycle progression</title><author>Suvorova, Elena S ; Croken, Matthew ; Kratzer, Stella ; Ting, Li-Min ; Conde de Felipe, Magnolia ; Balu, Bharath ; Markillie, Meng L ; Weiss, Louis M ; Kim, Kami ; White, Michael W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c819t-1301f3f4781d6f05a7b5e92ccbdc4a98e8877867e93a89d65fcaa2355a8be9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative Splicing - genetics</topic><topic>Biology</topic><topic>Cell</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>cell division cycle</topic><topic>chromosome replication</topic><topic>Chromosomes</topic><topic>Colleges & universities</topic><topic>Conserved Sequence - genetics</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Eukaryotes</topic><topic>eukaryotic</topic><topic>G1 Phase - genetics</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetics</topic><topic>Humans</topic><topic>Medicine</topic><topic>Mutation</topic><topic>Nucleotide Motifs - genetics</topic><topic>Parasites</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>splicing</topic><topic>Temperature</topic><topic>Toxoplasma</topic><topic>Toxoplasma - genetics</topic><topic>Toxoplasma - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suvorova, Elena S</creatorcontrib><creatorcontrib>Croken, Matthew</creatorcontrib><creatorcontrib>Kratzer, Stella</creatorcontrib><creatorcontrib>Ting, Li-Min</creatorcontrib><creatorcontrib>Conde de Felipe, Magnolia</creatorcontrib><creatorcontrib>Balu, Bharath</creatorcontrib><creatorcontrib>Markillie, Meng L</creatorcontrib><creatorcontrib>Weiss, Louis M</creatorcontrib><creatorcontrib>Kim, Kami</creatorcontrib><creatorcontrib>White, Michael W</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS Genetics, 9(2):Article No. e1003305</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suvorova, Elena S</au><au>Croken, Matthew</au><au>Kratzer, Stella</au><au>Ting, Li-Min</au><au>Conde de Felipe, Magnolia</au><au>Balu, Bharath</au><au>Markillie, Meng L</au><au>Weiss, Louis M</au><au>Kim, Kami</au><au>White, Michael W</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of a splicing regulator required for cell cycle progression</atitle><jtitle>PLoS Genetics, 9(2):Article No. e1003305</jtitle><addtitle>PLoS Genet</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>e1003305</spage><epage>e1003305</epage><pages>e1003305-e1003305</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23437009</pmid><doi>10.1371/journal.pgen.1003305</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS Genetics, 9(2):Article No. e1003305, 2013-02, Vol.9 (2), p.e1003305-e1003305 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1314346664 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Alternative Splicing - genetics Biology Cell Cell cycle Cell Cycle - genetics cell division cycle chromosome replication Chromosomes Colleges & universities Conserved Sequence - genetics Environmental Molecular Sciences Laboratory Eukaryotes eukaryotic G1 Phase - genetics Gene Expression Regulation Genetic aspects Genetic engineering Genetics Humans Medicine Mutation Nucleotide Motifs - genetics Parasites Physiological aspects Proteins RNA, Messenger - genetics RNA, Messenger - metabolism RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Sequence Homology, Amino Acid splicing Temperature Toxoplasma Toxoplasma - genetics Toxoplasma - metabolism |
title | Discovery of a splicing regulator required for cell cycle progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20a%20splicing%20regulator%20required%20for%20cell%20cycle%20progression&rft.jtitle=PLoS%20Genetics,%209(2):Article%20No.%20e1003305&rft.au=Suvorova,%20Elena%20S&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.spage=e1003305&rft.epage=e1003305&rft.pages=e1003305-e1003305&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003305&rft_dat=%3Cgale_plos_%3EA329898904%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314346664&rft_id=info:pmid/23437009&rft_galeid=A329898904&rft_doaj_id=oai_doaj_org_article_ff580613140941b68b2bc44ba752715d&rfr_iscdi=true |