The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network
Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2013-02, Vol.9 (2), p.e1003334-e1003334 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003334 |
---|---|
container_issue | 2 |
container_start_page | e1003334 |
container_title | PLoS genetics |
container_volume | 9 |
creator | Uthman, Shanow Bär, Christian Scheidt, Viktor Liu, Shihui ten Have, Sara Giorgini, Flaviano Stark, Michael J R Schaffrath, Raffael |
description | Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step-amidation of the intermediate diphthine to diphthamide-is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal -1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation. |
doi_str_mv | 10.1371/journal.pgen.1003334 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314345888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329898922</galeid><doaj_id>oai_doaj_org_article_7e811bffcb974ade90570e8ba6d1d671</doaj_id><sourcerecordid>A329898922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-3feb6203cb1c6da8cc7bad47b454957f9c2ddd8c0d86c0585a240a85d137e30c3</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggsISGQ2MWO7cS5QarKoZUqiqBwazn2JHHJ2lvbAfYReGu87bbqol6ALCXO5Jt_xjOeonhM8JzQmrw-81Nwapwve3BzgjGllN0pdgnndFYzzO7e2O8UD2I8ywwXTX2_2Ckpq0RV4d3i9-kASC2sUcl6h2KCJfIdMnY5pGFtB9RaH1cuDRBtRNahFaiYUIDzyQaI6O2nw-oVUiinASjzLtnOgkFpCH7qB7Swzro-f8IaJbP84FkmQVD6IqaD9NOH7w-Le50aIzzavPeKr-_fnR4czo5PPhwd7B_PdN2UaUY7aKsSU90SXRkltK5bZVjdMs4aXneNLo0xQmMjKo254KpkWAluctGAYk33iqeXusvRR7mpYpSEEkYZF0Jk4uiSMF6dyWWwCxVW0isrLww-9FKFZPUIsgZBSNt1um1qpgw0mNcYRKsqQ0xVk6z1ZhNtahdgdC5PUOOW6PYfZwfZ-x8yt4oTirPAi41A8OcTxCQXNmoYR-XATxd584qWnLOMPvsLvf10G6pX-QDWdT7H1WtRuU_LRuRVlpma30LlZWBhtXfQ2Wzfcni55ZCZBL9Sr6YY5dGXz__Bfvx39uTbNvv8BjuAGtMQ_Titr1ncBtklqIOPMUB33RCC5Xq6rion19MlN9OV3Z7cbOa109U40T9CRB_P</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314345888</pqid></control><display><type>article</type><title>The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Uthman, Shanow ; Bär, Christian ; Scheidt, Viktor ; Liu, Shihui ; ten Have, Sara ; Giorgini, Flaviano ; Stark, Michael J R ; Schaffrath, Raffael</creator><contributor>Andersen, Gregers Rom</contributor><creatorcontrib>Uthman, Shanow ; Bär, Christian ; Scheidt, Viktor ; Liu, Shihui ; ten Have, Sara ; Giorgini, Flaviano ; Stark, Michael J R ; Schaffrath, Raffael ; Andersen, Gregers Rom</creatorcontrib><description>Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step-amidation of the intermediate diphthine to diphthamide-is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal -1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003334</identifier><identifier>PMID: 23468660</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - metabolism ; Amides - chemistry ; Amides - metabolism ; Amidohydrolases - genetics ; Amidohydrolases - metabolism ; Biology ; Biosynthesis ; Carbon-Nitrogen Ligases - genetics ; Cell growth ; Chemistry ; Colleges & universities ; Computer Science ; Diphtheria ; Elongation Factor 2 Kinase - genetics ; Elongation Factor 2 Kinase - metabolism ; Enzymes ; Gene expression ; Genes ; Genetics ; Health aspects ; Histidine - analogs & derivatives ; Histidine - biosynthesis ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Mutation ; Physiological aspects ; Protein Binding ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription factors ; Yeast</subject><ispartof>PLoS genetics, 2013-02, Vol.9 (2), p.e1003334-e1003334</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Uthman S, Bär C, Scheidt V, Liu S, ten Have S, et al. (2013) The Amidation Step of Diphthamide Biosynthesis in Yeast Requires DPH6, a Gene Identified through Mining the DPH1-DPH5 Interaction Network. PLoS Genet 9(2): e1003334. doi:10.1371/journal.pgen.1003334</rights><rights>2013</rights><rights>2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Uthman S, Bär C, Scheidt V, Liu S, ten Have S, et al. (2013) The Amidation Step of Diphthamide Biosynthesis in Yeast Requires DPH6, a Gene Identified through Mining the DPH1-DPH5 Interaction Network. PLoS Genet 9(2): e1003334. doi:10.1371/journal.pgen.1003334</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-3feb6203cb1c6da8cc7bad47b454957f9c2ddd8c0d86c0585a240a85d137e30c3</citedby><cites>FETCH-LOGICAL-c792t-3feb6203cb1c6da8cc7bad47b454957f9c2ddd8c0d86c0585a240a85d137e30c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585130/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585130/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23468660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Andersen, Gregers Rom</contributor><creatorcontrib>Uthman, Shanow</creatorcontrib><creatorcontrib>Bär, Christian</creatorcontrib><creatorcontrib>Scheidt, Viktor</creatorcontrib><creatorcontrib>Liu, Shihui</creatorcontrib><creatorcontrib>ten Have, Sara</creatorcontrib><creatorcontrib>Giorgini, Flaviano</creatorcontrib><creatorcontrib>Stark, Michael J R</creatorcontrib><creatorcontrib>Schaffrath, Raffael</creatorcontrib><title>The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step-amidation of the intermediate diphthine to diphthamide-is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal -1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Amides - chemistry</subject><subject>Amides - metabolism</subject><subject>Amidohydrolases - genetics</subject><subject>Amidohydrolases - metabolism</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Carbon-Nitrogen Ligases - genetics</subject><subject>Cell growth</subject><subject>Chemistry</subject><subject>Colleges & universities</subject><subject>Computer Science</subject><subject>Diphtheria</subject><subject>Elongation Factor 2 Kinase - genetics</subject><subject>Elongation Factor 2 Kinase - metabolism</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetics</subject><subject>Health aspects</subject><subject>Histidine - analogs & derivatives</subject><subject>Histidine - biosynthesis</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Mutation</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription factors</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggsISGQ2MWO7cS5QarKoZUqiqBwazn2JHHJ2lvbAfYReGu87bbqol6ALCXO5Jt_xjOeonhM8JzQmrw-81Nwapwve3BzgjGllN0pdgnndFYzzO7e2O8UD2I8ywwXTX2_2Ckpq0RV4d3i9-kASC2sUcl6h2KCJfIdMnY5pGFtB9RaH1cuDRBtRNahFaiYUIDzyQaI6O2nw-oVUiinASjzLtnOgkFpCH7qB7Swzro-f8IaJbP84FkmQVD6IqaD9NOH7w-Le50aIzzavPeKr-_fnR4czo5PPhwd7B_PdN2UaUY7aKsSU90SXRkltK5bZVjdMs4aXneNLo0xQmMjKo254KpkWAluctGAYk33iqeXusvRR7mpYpSEEkYZF0Jk4uiSMF6dyWWwCxVW0isrLww-9FKFZPUIsgZBSNt1um1qpgw0mNcYRKsqQ0xVk6z1ZhNtahdgdC5PUOOW6PYfZwfZ-x8yt4oTirPAi41A8OcTxCQXNmoYR-XATxd584qWnLOMPvsLvf10G6pX-QDWdT7H1WtRuU_LRuRVlpma30LlZWBhtXfQ2Wzfcni55ZCZBL9Sr6YY5dGXz__Bfvx39uTbNvv8BjuAGtMQ_Titr1ncBtklqIOPMUB33RCC5Xq6rion19MlN9OV3Z7cbOa109U40T9CRB_P</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Uthman, Shanow</creator><creator>Bär, Christian</creator><creator>Scheidt, Viktor</creator><creator>Liu, Shihui</creator><creator>ten Have, Sara</creator><creator>Giorgini, Flaviano</creator><creator>Stark, Michael J R</creator><creator>Schaffrath, Raffael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130201</creationdate><title>The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network</title><author>Uthman, Shanow ; Bär, Christian ; Scheidt, Viktor ; Liu, Shihui ; ten Have, Sara ; Giorgini, Flaviano ; Stark, Michael J R ; Schaffrath, Raffael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-3feb6203cb1c6da8cc7bad47b454957f9c2ddd8c0d86c0585a240a85d137e30c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Amides - chemistry</topic><topic>Amides - metabolism</topic><topic>Amidohydrolases - genetics</topic><topic>Amidohydrolases - metabolism</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Carbon-Nitrogen Ligases - genetics</topic><topic>Cell growth</topic><topic>Chemistry</topic><topic>Colleges & universities</topic><topic>Computer Science</topic><topic>Diphtheria</topic><topic>Elongation Factor 2 Kinase - genetics</topic><topic>Elongation Factor 2 Kinase - metabolism</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetics</topic><topic>Health aspects</topic><topic>Histidine - analogs & derivatives</topic><topic>Histidine - biosynthesis</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Mutation</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uthman, Shanow</creatorcontrib><creatorcontrib>Bär, Christian</creatorcontrib><creatorcontrib>Scheidt, Viktor</creatorcontrib><creatorcontrib>Liu, Shihui</creatorcontrib><creatorcontrib>ten Have, Sara</creatorcontrib><creatorcontrib>Giorgini, Flaviano</creatorcontrib><creatorcontrib>Stark, Michael J R</creatorcontrib><creatorcontrib>Schaffrath, Raffael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uthman, Shanow</au><au>Bär, Christian</au><au>Scheidt, Viktor</au><au>Liu, Shihui</au><au>ten Have, Sara</au><au>Giorgini, Flaviano</au><au>Stark, Michael J R</au><au>Schaffrath, Raffael</au><au>Andersen, Gregers Rom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>e1003334</spage><epage>e1003334</epage><pages>e1003334-e1003334</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step-amidation of the intermediate diphthine to diphthamide-is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal -1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23468660</pmid><doi>10.1371/journal.pgen.1003334</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2013-02, Vol.9 (2), p.e1003334-e1003334 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1314345888 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Adenosine Triphosphate - metabolism Amides - chemistry Amides - metabolism Amidohydrolases - genetics Amidohydrolases - metabolism Biology Biosynthesis Carbon-Nitrogen Ligases - genetics Cell growth Chemistry Colleges & universities Computer Science Diphtheria Elongation Factor 2 Kinase - genetics Elongation Factor 2 Kinase - metabolism Enzymes Gene expression Genes Genetics Health aspects Histidine - analogs & derivatives Histidine - biosynthesis Methyltransferases - genetics Methyltransferases - metabolism Mutation Physiological aspects Protein Binding Protein Biosynthesis Protein synthesis Proteins Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription factors Yeast |
title | The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20amidation%20step%20of%20diphthamide%20biosynthesis%20in%20yeast%20requires%20DPH6,%20a%20gene%20identified%20through%20mining%20the%20DPH1-DPH5%20interaction%20network&rft.jtitle=PLoS%20genetics&rft.au=Uthman,%20Shanow&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.spage=e1003334&rft.epage=e1003334&rft.pages=e1003334-e1003334&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003334&rft_dat=%3Cgale_plos_%3EA329898922%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314345888&rft_id=info:pmid/23468660&rft_galeid=A329898922&rft_doaj_id=oai_doaj_org_article_7e811bffcb974ade90570e8ba6d1d671&rfr_iscdi=true |