The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein
The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2013-02, Vol.9 (2), p.e1003216-e1003216 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003216 |
---|---|
container_issue | 2 |
container_start_page | e1003216 |
container_title | PLoS genetics |
container_volume | 9 |
creator | Akiyoshi, Bungo Nelson, Christian R Duggan, Nicole Ceto, Steven Ranish, Jeffrey A Biggins, Sue |
description | The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability. |
doi_str_mv | 10.1371/journal.pgen.1003216 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314345842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329898853</galeid><doaj_id>oai_doaj_org_article_22f2b1eaa235479d9c8af64b74a803a9</doaj_id><sourcerecordid>A329898853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2K0_N84FqSpfKxUqQQtHy3EmWRdvvLWdqvx7nG5abVAPIB9sjZ95Z8bjybLnGM0xLfDhhet9p-x800I3xwhRghcPsn3MOZ0VDLGHO-e97EkIF4nhoiweZ3uEMiREyfazn2cryL_0FT48rzzJ-8pc9iaaLremVQFy7dYbC9e5h7a3KkLI42qwdgH8FdT5-9Dh_JfpIDq9ch7yjXcRTPc0e9QoG-DZuB9k5x8_nB1_np2cfloeH53MdEEWcUYxqpXAlSYNFmzBhS6rqlYIaVQ2FVJc1VXBOKoFK2gDDQJBlSK41EpxXlJ6kL3c6m6sC3J8kyAxxYwyLhhJxHJL1E5dyI03a-V_S6eMvDE430rlo9EWJCENqTCkAJSzoqxLLVSzYCkDJRBVZdJ6N0brqzXUGrrolZ2ITm86s5Ktu5KULwp8k8ybUcC7yx5ClGsTNFirOnB9ypsIkVInaKjs1V_o_dWNVKtSAaZrXIqrB1F5REkpSiH4oDW_h0qrhrVJzYTGJPvE4e3EITERrmOr-hDk8vu3_2C__jt7-mPKvt5hV6BsXAVn-2jS75uCbAtq70Lw0Nw1BCM5zMrty8lhVuQ4K8ntxW4z75xuh4P-AcT6Dao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314345842</pqid></control><display><type>article</type><title>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Akiyoshi, Bungo ; Nelson, Christian R ; Duggan, Nicole ; Ceto, Steven ; Ranish, Jeffrey A ; Biggins, Sue</creator><contributor>Sullivan, Beth A.</contributor><creatorcontrib>Akiyoshi, Bungo ; Nelson, Christian R ; Duggan, Nicole ; Ceto, Steven ; Ranish, Jeffrey A ; Biggins, Sue ; Sullivan, Beth A.</creatorcontrib><description>The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003216</identifier><identifier>PMID: 23408894</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell division ; Cell Survival - genetics ; Centromere - genetics ; Centromere - metabolism ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosomes ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzymes ; Experiments ; Gene expression ; Genetic aspects ; Health aspects ; Kinetochores ; Kinetochores - metabolism ; Ligases ; Physiological aspects ; Plasmids ; Proteins ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Ubiquitin ; Ubiquitin - genetics ; Ubiquitin - metabolism ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Yeast</subject><ispartof>PLoS genetics, 2013-02, Vol.9 (2), p.e1003216-e1003216</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Akiyoshi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Akiyoshi B, Nelson CR, Duggan N, Ceto S, Ranish JA, et al. (2013) The Mub1/Ubr2 Ubiquitin Ligase Complex Regulates the Conserved Dsn1 Kinetochore Protein. PLoS Genet 9(2): e1003216. doi:10.1371/journal.pgen.1003216</rights><rights>2013 Akiyoshi et al 2013 Akiyoshi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</citedby><cites>FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567142/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567142/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23408894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sullivan, Beth A.</contributor><creatorcontrib>Akiyoshi, Bungo</creatorcontrib><creatorcontrib>Nelson, Christian R</creatorcontrib><creatorcontrib>Duggan, Nicole</creatorcontrib><creatorcontrib>Ceto, Steven</creatorcontrib><creatorcontrib>Ranish, Jeffrey A</creatorcontrib><creatorcontrib>Biggins, Sue</creatorcontrib><title>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.</description><subject>Biology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell division</subject><subject>Cell Survival - genetics</subject><subject>Centromere - genetics</subject><subject>Centromere - metabolism</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosomes</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Kinetochores</subject><subject>Kinetochores - metabolism</subject><subject>Ligases</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2K0_N84FqSpfKxUqQQtHy3EmWRdvvLWdqvx7nG5abVAPIB9sjZ95Z8bjybLnGM0xLfDhhet9p-x800I3xwhRghcPsn3MOZ0VDLGHO-e97EkIF4nhoiweZ3uEMiREyfazn2cryL_0FT48rzzJ-8pc9iaaLremVQFy7dYbC9e5h7a3KkLI42qwdgH8FdT5-9Dh_JfpIDq9ch7yjXcRTPc0e9QoG-DZuB9k5x8_nB1_np2cfloeH53MdEEWcUYxqpXAlSYNFmzBhS6rqlYIaVQ2FVJc1VXBOKoFK2gDDQJBlSK41EpxXlJ6kL3c6m6sC3J8kyAxxYwyLhhJxHJL1E5dyI03a-V_S6eMvDE430rlo9EWJCENqTCkAJSzoqxLLVSzYCkDJRBVZdJ6N0brqzXUGrrolZ2ITm86s5Ktu5KULwp8k8ybUcC7yx5ClGsTNFirOnB9ypsIkVInaKjs1V_o_dWNVKtSAaZrXIqrB1F5REkpSiH4oDW_h0qrhrVJzYTGJPvE4e3EITERrmOr-hDk8vu3_2C__jt7-mPKvt5hV6BsXAVn-2jS75uCbAtq70Lw0Nw1BCM5zMrty8lhVuQ4K8ntxW4z75xuh4P-AcT6Dao</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Akiyoshi, Bungo</creator><creator>Nelson, Christian R</creator><creator>Duggan, Nicole</creator><creator>Ceto, Steven</creator><creator>Ranish, Jeffrey A</creator><creator>Biggins, Sue</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130201</creationdate><title>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</title><author>Akiyoshi, Bungo ; Nelson, Christian R ; Duggan, Nicole ; Ceto, Steven ; Ranish, Jeffrey A ; Biggins, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell division</topic><topic>Cell Survival - genetics</topic><topic>Centromere - genetics</topic><topic>Centromere - metabolism</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosomes</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Kinetochores</topic><topic>Kinetochores - metabolism</topic><topic>Ligases</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akiyoshi, Bungo</creatorcontrib><creatorcontrib>Nelson, Christian R</creatorcontrib><creatorcontrib>Duggan, Nicole</creatorcontrib><creatorcontrib>Ceto, Steven</creatorcontrib><creatorcontrib>Ranish, Jeffrey A</creatorcontrib><creatorcontrib>Biggins, Sue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akiyoshi, Bungo</au><au>Nelson, Christian R</au><au>Duggan, Nicole</au><au>Ceto, Steven</au><au>Ranish, Jeffrey A</au><au>Biggins, Sue</au><au>Sullivan, Beth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>e1003216</spage><epage>e1003216</epage><pages>e1003216-e1003216</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23408894</pmid><doi>10.1371/journal.pgen.1003216</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2013-02, Vol.9 (2), p.e1003216-e1003216 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1314345842 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Biology Carrier Proteins - genetics Carrier Proteins - metabolism Cell division Cell Survival - genetics Centromere - genetics Centromere - metabolism Chromatin - metabolism Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Chromosomes DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Enzymes Experiments Gene expression Genetic aspects Health aspects Kinetochores Kinetochores - metabolism Ligases Physiological aspects Plasmids Proteins Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Ubiquitin Ubiquitin - genetics Ubiquitin - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Yeast |
title | The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mub1/Ubr2%20ubiquitin%20ligase%20complex%20regulates%20the%20conserved%20Dsn1%20kinetochore%20protein&rft.jtitle=PLoS%20genetics&rft.au=Akiyoshi,%20Bungo&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.spage=e1003216&rft.epage=e1003216&rft.pages=e1003216-e1003216&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003216&rft_dat=%3Cgale_plos_%3EA329898853%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314345842&rft_id=info:pmid/23408894&rft_galeid=A329898853&rft_doaj_id=oai_doaj_org_article_22f2b1eaa235479d9c8af64b74a803a9&rfr_iscdi=true |