The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein

The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2013-02, Vol.9 (2), p.e1003216-e1003216
Hauptverfasser: Akiyoshi, Bungo, Nelson, Christian R, Duggan, Nicole, Ceto, Steven, Ranish, Jeffrey A, Biggins, Sue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003216
container_issue 2
container_start_page e1003216
container_title PLoS genetics
container_volume 9
creator Akiyoshi, Bungo
Nelson, Christian R
Duggan, Nicole
Ceto, Steven
Ranish, Jeffrey A
Biggins, Sue
description The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.
doi_str_mv 10.1371/journal.pgen.1003216
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314345842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329898853</galeid><doaj_id>oai_doaj_org_article_22f2b1eaa235479d9c8af64b74a803a9</doaj_id><sourcerecordid>A329898853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2K0_N84FqSpfKxUqQQtHy3EmWRdvvLWdqvx7nG5abVAPIB9sjZ95Z8bjybLnGM0xLfDhhet9p-x800I3xwhRghcPsn3MOZ0VDLGHO-e97EkIF4nhoiweZ3uEMiREyfazn2cryL_0FT48rzzJ-8pc9iaaLremVQFy7dYbC9e5h7a3KkLI42qwdgH8FdT5-9Dh_JfpIDq9ch7yjXcRTPc0e9QoG-DZuB9k5x8_nB1_np2cfloeH53MdEEWcUYxqpXAlSYNFmzBhS6rqlYIaVQ2FVJc1VXBOKoFK2gDDQJBlSK41EpxXlJ6kL3c6m6sC3J8kyAxxYwyLhhJxHJL1E5dyI03a-V_S6eMvDE430rlo9EWJCENqTCkAJSzoqxLLVSzYCkDJRBVZdJ6N0brqzXUGrrolZ2ITm86s5Ktu5KULwp8k8ybUcC7yx5ClGsTNFirOnB9ypsIkVInaKjs1V_o_dWNVKtSAaZrXIqrB1F5REkpSiH4oDW_h0qrhrVJzYTGJPvE4e3EITERrmOr-hDk8vu3_2C__jt7-mPKvt5hV6BsXAVn-2jS75uCbAtq70Lw0Nw1BCM5zMrty8lhVuQ4K8ntxW4z75xuh4P-AcT6Dao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314345842</pqid></control><display><type>article</type><title>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Akiyoshi, Bungo ; Nelson, Christian R ; Duggan, Nicole ; Ceto, Steven ; Ranish, Jeffrey A ; Biggins, Sue</creator><contributor>Sullivan, Beth A.</contributor><creatorcontrib>Akiyoshi, Bungo ; Nelson, Christian R ; Duggan, Nicole ; Ceto, Steven ; Ranish, Jeffrey A ; Biggins, Sue ; Sullivan, Beth A.</creatorcontrib><description>The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003216</identifier><identifier>PMID: 23408894</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell division ; Cell Survival - genetics ; Centromere - genetics ; Centromere - metabolism ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosomes ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzymes ; Experiments ; Gene expression ; Genetic aspects ; Health aspects ; Kinetochores ; Kinetochores - metabolism ; Ligases ; Physiological aspects ; Plasmids ; Proteins ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Ubiquitin ; Ubiquitin - genetics ; Ubiquitin - metabolism ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Yeast</subject><ispartof>PLoS genetics, 2013-02, Vol.9 (2), p.e1003216-e1003216</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Akiyoshi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Akiyoshi B, Nelson CR, Duggan N, Ceto S, Ranish JA, et al. (2013) The Mub1/Ubr2 Ubiquitin Ligase Complex Regulates the Conserved Dsn1 Kinetochore Protein. PLoS Genet 9(2): e1003216. doi:10.1371/journal.pgen.1003216</rights><rights>2013 Akiyoshi et al 2013 Akiyoshi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</citedby><cites>FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567142/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567142/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23408894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sullivan, Beth A.</contributor><creatorcontrib>Akiyoshi, Bungo</creatorcontrib><creatorcontrib>Nelson, Christian R</creatorcontrib><creatorcontrib>Duggan, Nicole</creatorcontrib><creatorcontrib>Ceto, Steven</creatorcontrib><creatorcontrib>Ranish, Jeffrey A</creatorcontrib><creatorcontrib>Biggins, Sue</creatorcontrib><title>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.</description><subject>Biology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell division</subject><subject>Cell Survival - genetics</subject><subject>Centromere - genetics</subject><subject>Centromere - metabolism</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosomes</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Kinetochores</subject><subject>Kinetochores - metabolism</subject><subject>Ligases</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2K0_N84FqSpfKxUqQQtHy3EmWRdvvLWdqvx7nG5abVAPIB9sjZ95Z8bjybLnGM0xLfDhhet9p-x800I3xwhRghcPsn3MOZ0VDLGHO-e97EkIF4nhoiweZ3uEMiREyfazn2cryL_0FT48rzzJ-8pc9iaaLremVQFy7dYbC9e5h7a3KkLI42qwdgH8FdT5-9Dh_JfpIDq9ch7yjXcRTPc0e9QoG-DZuB9k5x8_nB1_np2cfloeH53MdEEWcUYxqpXAlSYNFmzBhS6rqlYIaVQ2FVJc1VXBOKoFK2gDDQJBlSK41EpxXlJ6kL3c6m6sC3J8kyAxxYwyLhhJxHJL1E5dyI03a-V_S6eMvDE430rlo9EWJCENqTCkAJSzoqxLLVSzYCkDJRBVZdJ6N0brqzXUGrrolZ2ITm86s5Ktu5KULwp8k8ybUcC7yx5ClGsTNFirOnB9ypsIkVInaKjs1V_o_dWNVKtSAaZrXIqrB1F5REkpSiH4oDW_h0qrhrVJzYTGJPvE4e3EITERrmOr-hDk8vu3_2C__jt7-mPKvt5hV6BsXAVn-2jS75uCbAtq70Lw0Nw1BCM5zMrty8lhVuQ4K8ntxW4z75xuh4P-AcT6Dao</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Akiyoshi, Bungo</creator><creator>Nelson, Christian R</creator><creator>Duggan, Nicole</creator><creator>Ceto, Steven</creator><creator>Ranish, Jeffrey A</creator><creator>Biggins, Sue</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130201</creationdate><title>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</title><author>Akiyoshi, Bungo ; Nelson, Christian R ; Duggan, Nicole ; Ceto, Steven ; Ranish, Jeffrey A ; Biggins, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-310da81bc2f184658c9bbda00c09fb0a5adb7450d8473fef0e83aa219caa55933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell division</topic><topic>Cell Survival - genetics</topic><topic>Centromere - genetics</topic><topic>Centromere - metabolism</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosomes</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Kinetochores</topic><topic>Kinetochores - metabolism</topic><topic>Ligases</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akiyoshi, Bungo</creatorcontrib><creatorcontrib>Nelson, Christian R</creatorcontrib><creatorcontrib>Duggan, Nicole</creatorcontrib><creatorcontrib>Ceto, Steven</creatorcontrib><creatorcontrib>Ranish, Jeffrey A</creatorcontrib><creatorcontrib>Biggins, Sue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akiyoshi, Bungo</au><au>Nelson, Christian R</au><au>Duggan, Nicole</au><au>Ceto, Steven</au><au>Ranish, Jeffrey A</au><au>Biggins, Sue</au><au>Sullivan, Beth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>e1003216</spage><epage>e1003216</epage><pages>e1003216-e1003216</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23408894</pmid><doi>10.1371/journal.pgen.1003216</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2013-02, Vol.9 (2), p.e1003216-e1003216
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1314345842
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Biology
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell division
Cell Survival - genetics
Centromere - genetics
Centromere - metabolism
Chromatin - metabolism
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Chromosomes
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enzymes
Experiments
Gene expression
Genetic aspects
Health aspects
Kinetochores
Kinetochores - metabolism
Ligases
Physiological aspects
Plasmids
Proteins
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Ubiquitin
Ubiquitin - genetics
Ubiquitin - metabolism
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Yeast
title The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mub1/Ubr2%20ubiquitin%20ligase%20complex%20regulates%20the%20conserved%20Dsn1%20kinetochore%20protein&rft.jtitle=PLoS%20genetics&rft.au=Akiyoshi,%20Bungo&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.spage=e1003216&rft.epage=e1003216&rft.pages=e1003216-e1003216&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003216&rft_dat=%3Cgale_plos_%3EA329898853%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314345842&rft_id=info:pmid/23408894&rft_galeid=A329898853&rft_doaj_id=oai_doaj_org_article_22f2b1eaa235479d9c8af64b74a803a9&rfr_iscdi=true