Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus
Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductiv...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2013-02, Vol.11 (2), p.e1001497-e1001497 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1001497 |
---|---|
container_issue | 2 |
container_start_page | e1001497 |
container_title | PLoS biology |
container_volume | 11 |
creator | Wright, Kevin M Lloyd, Deborah Lowry, David B Macnair, Mark R Willis, John H |
description | Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment. |
doi_str_mv | 10.1371/journal.pbio.1001497 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314343999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A322026697</galeid><doaj_id>oai_doaj_org_article_82ce677c55554010878d91a54f644058</doaj_id><sourcerecordid>A322026697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-84e143ad9e5c7730cea0bddd0810f45bf0fb5e2c9c4fd0a9f54d6f82c55e5c083</originalsourceid><addsrcrecordid>eNqVk11vFCEUhidGY2v1HxidxBu92BUGmBlumjSNH5tUm_h1ZwgDh1lWdlgHprr_XnZ32nRMLzRcQA7P-x44cLLsKUZzTCr8euWHvpNuvmmsn2OEMOXVvewYM8pmVV2z-7fWR9mjEFYIFQUv6ofZUUFoWTPOjrPvi07bHlTM4cq7IVrf5d7ky23TW507iEvpbNzmeoA8-tzZ7odsIf9l4zIP4JIQEubVEHLb5R_senBp2Q4xyjiEx9kDI12AJ-N8kn19--bL-fvZxeW7xfnZxUyVnMVZTQFTIjUHpqqKIAUSNVprVGNkKGsMMg2DQnFFjUaSG0Z1aepCMZYUqCYn2fOD78b5IMbKBIFJsqWEc56IxYHQXq7Eprdr2W-Fl1bsA75vheyjVQ5E8oWyqpI5YxRhVFe15lgyakpKEdtlOx2zDc0atIIu9tJNTKc7nV2K1l8JwuqC7g_zcjTo_c8BQhRrGxQ4Jzvww_7crCSE4SKhL_5C777dSLUyXcB2xqe8amcqzkhRoKIseZWo-R1UGhrWVvkOjE3xieDVRJCYCL9jK4cQxOLzp_9gP_47e_ltytIDq3ofQg_mps4YiV0jXBdE7BpBjI2QZM9uv9GN6Prnkz9sUAMt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314343999</pqid></control><display><type>article</type><title>Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Wright, Kevin M ; Lloyd, Deborah ; Lowry, David B ; Macnair, Mark R ; Willis, John H</creator><creatorcontrib>Wright, Kevin M ; Lloyd, Deborah ; Lowry, David B ; Macnair, Mark R ; Willis, John H</creatorcontrib><description>Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1001497</identifier><identifier>PMID: 23468595</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Physiological ; Alleles ; Biological diversity ; Biological Evolution ; Biology ; Chimera - genetics ; Chimera - physiology ; Chromosome Mapping ; Evolution ; Genetic aspects ; Genetic Linkage - genetics ; Genetics ; Genomics ; Lamiales ; Mimulus - genetics ; Mimulus - physiology ; Physiological aspects ; Plant genetics ; Quantitative Trait Loci - genetics ; Studies</subject><ispartof>PLoS biology, 2013-02, Vol.11 (2), p.e1001497-e1001497</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Wright et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wright KM, Lloyd D, Lowry DB, Macnair MR, Willis JH (2013) Indirect Evolution of Hybrid Lethality Due to Linkage with Selected Locus in Mimulus guttatus. PLoS Biol 11(2): e1001497. doi:10.1371/journal.pbio.1001497</rights><rights>2013 Wright et al 2013 Wright et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-84e143ad9e5c7730cea0bddd0810f45bf0fb5e2c9c4fd0a9f54d6f82c55e5c083</citedby><cites>FETCH-LOGICAL-c695t-84e143ad9e5c7730cea0bddd0810f45bf0fb5e2c9c4fd0a9f54d6f82c55e5c083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582499/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582499/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23468595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wright, Kevin M</creatorcontrib><creatorcontrib>Lloyd, Deborah</creatorcontrib><creatorcontrib>Lowry, David B</creatorcontrib><creatorcontrib>Macnair, Mark R</creatorcontrib><creatorcontrib>Willis, John H</creatorcontrib><title>Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.</description><subject>Adaptation, Physiological</subject><subject>Alleles</subject><subject>Biological diversity</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Chimera - genetics</subject><subject>Chimera - physiology</subject><subject>Chromosome Mapping</subject><subject>Evolution</subject><subject>Genetic aspects</subject><subject>Genetic Linkage - genetics</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Lamiales</subject><subject>Mimulus - genetics</subject><subject>Mimulus - physiology</subject><subject>Physiological aspects</subject><subject>Plant genetics</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Studies</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11vFCEUhidGY2v1HxidxBu92BUGmBlumjSNH5tUm_h1ZwgDh1lWdlgHprr_XnZ32nRMLzRcQA7P-x44cLLsKUZzTCr8euWHvpNuvmmsn2OEMOXVvewYM8pmVV2z-7fWR9mjEFYIFQUv6ofZUUFoWTPOjrPvi07bHlTM4cq7IVrf5d7ky23TW507iEvpbNzmeoA8-tzZ7odsIf9l4zIP4JIQEubVEHLb5R_senBp2Q4xyjiEx9kDI12AJ-N8kn19--bL-fvZxeW7xfnZxUyVnMVZTQFTIjUHpqqKIAUSNVprVGNkKGsMMg2DQnFFjUaSG0Z1aepCMZYUqCYn2fOD78b5IMbKBIFJsqWEc56IxYHQXq7Eprdr2W-Fl1bsA75vheyjVQ5E8oWyqpI5YxRhVFe15lgyakpKEdtlOx2zDc0atIIu9tJNTKc7nV2K1l8JwuqC7g_zcjTo_c8BQhRrGxQ4Jzvww_7crCSE4SKhL_5C777dSLUyXcB2xqe8amcqzkhRoKIseZWo-R1UGhrWVvkOjE3xieDVRJCYCL9jK4cQxOLzp_9gP_47e_ltytIDq3ofQg_mps4YiV0jXBdE7BpBjI2QZM9uv9GN6Prnkz9sUAMt</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Wright, Kevin M</creator><creator>Lloyd, Deborah</creator><creator>Lowry, David B</creator><creator>Macnair, Mark R</creator><creator>Willis, John H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20130201</creationdate><title>Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus</title><author>Wright, Kevin M ; Lloyd, Deborah ; Lowry, David B ; Macnair, Mark R ; Willis, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-84e143ad9e5c7730cea0bddd0810f45bf0fb5e2c9c4fd0a9f54d6f82c55e5c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Alleles</topic><topic>Biological diversity</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Chimera - genetics</topic><topic>Chimera - physiology</topic><topic>Chromosome Mapping</topic><topic>Evolution</topic><topic>Genetic aspects</topic><topic>Genetic Linkage - genetics</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Lamiales</topic><topic>Mimulus - genetics</topic><topic>Mimulus - physiology</topic><topic>Physiological aspects</topic><topic>Plant genetics</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, Kevin M</creatorcontrib><creatorcontrib>Lloyd, Deborah</creatorcontrib><creatorcontrib>Lowry, David B</creatorcontrib><creatorcontrib>Macnair, Mark R</creatorcontrib><creatorcontrib>Willis, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, Kevin M</au><au>Lloyd, Deborah</au><au>Lowry, David B</au><au>Macnair, Mark R</au><au>Willis, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>11</volume><issue>2</issue><spage>e1001497</spage><epage>e1001497</epage><pages>e1001497-e1001497</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23468595</pmid><doi>10.1371/journal.pbio.1001497</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2013-02, Vol.11 (2), p.e1001497-e1001497 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1314343999 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adaptation, Physiological Alleles Biological diversity Biological Evolution Biology Chimera - genetics Chimera - physiology Chromosome Mapping Evolution Genetic aspects Genetic Linkage - genetics Genetics Genomics Lamiales Mimulus - genetics Mimulus - physiology Physiological aspects Plant genetics Quantitative Trait Loci - genetics Studies |
title | Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20evolution%20of%20hybrid%20lethality%20due%20to%20linkage%20with%20selected%20locus%20in%20Mimulus%20guttatus&rft.jtitle=PLoS%20biology&rft.au=Wright,%20Kevin%20M&rft.date=2013-02-01&rft.volume=11&rft.issue=2&rft.spage=e1001497&rft.epage=e1001497&rft.pages=e1001497-e1001497&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1001497&rft_dat=%3Cgale_plos_%3EA322026697%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314343999&rft_id=info:pmid/23468595&rft_galeid=A322026697&rft_doaj_id=oai_doaj_org_article_82ce677c55554010878d91a54f644058&rfr_iscdi=true |