Directed evolution of a model primordial enzyme provides insights into the development of the genetic code

The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2013-01, Vol.9 (1), p.e1003187
Hauptverfasser: Müller, Manuel M, Allison, Jane R, Hongdilokkul, Narupat, Gaillon, Laurent, Kast, Peter, van Gunsteren, Wilfred F, Marlière, Philippe, Hilvert, Donald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e1003187
container_title PLoS genetics
container_volume 9
creator Müller, Manuel M
Allison, Jane R
Hongdilokkul, Narupat
Gaillon, Laurent
Kast, Peter
van Gunsteren, Wilfred F
Marlière, Philippe
Hilvert, Donald
description The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by >4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.
doi_str_mv 10.1371/journal.pgen.1003187
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314341923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A320264520</galeid><doaj_id>oai_doaj_org_article_0f687fdbf2764a9ca772733f50d682da</doaj_id><sourcerecordid>A320264520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-747b5ebec8ecf4cf986e71246ec593289863d87033d7c1591b86e31bffdf07ba3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLgrAXMyZN27Q3wrB-7MDggl-3IU1O2gxtMybp4PrrTZ3uMhUFpRdNT5_znvOe9kTRU4xWmFD8amcG2_N2ta-hX2GECC7ovegcZxlZ0hSl90_OZ9Ej53aByYqSPozOEkIQSoviPNq90RaEBxnDwbSD16aPjYp53BkJbby3ujNWat7G0P-46SBEzEFLcLHuna4bPx68iX0DsYQDtGbfQe9HjTEUegOvRSyC2uPogeKtgyfTfRF9eff28-XVcnv9fnO53i4FzZEP_dIqgwpEAUKlQpVFDhQnaQ4iK0lShGciC4oIkVTgrMRVAAiulJIK0YqTRfT8qLtvjWPTmBzDBKckxWXwvog2R0IavmOjR25vmOGa_QoYWzNuQ9stMKTygipZqYTmKS8FpzShhKgMybxI5Fjt9VRtqDqQIpi3vJ2Jzt_0umG1OTCSkZxiHAQujgLNb2lX6y0TwBlK87ykODuM7IupmDXfBnD-L_YmqubBge6VCYVFp51ga5KgJE-zBAVq9QcqXBI6LUwPSof4LOFilhAYD999zQfn2ObTx_9gP_w7e_11zr48YRvgrW_c9N-6OZgeQWGNcxbU3WgxYuP-3E6OjfvDpv0Jac9Ov-Zd0u3CkJ_9iBR0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314341923</pqid></control><display><type>article</type><title>Directed evolution of a model primordial enzyme provides insights into the development of the genetic code</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Müller, Manuel M ; Allison, Jane R ; Hongdilokkul, Narupat ; Gaillon, Laurent ; Kast, Peter ; van Gunsteren, Wilfred F ; Marlière, Philippe ; Hilvert, Donald</creator><contributor>Plotkin, Joshua B.</contributor><creatorcontrib>Müller, Manuel M ; Allison, Jane R ; Hongdilokkul, Narupat ; Gaillon, Laurent ; Kast, Peter ; van Gunsteren, Wilfred F ; Marlière, Philippe ; Hilvert, Donald ; Plotkin, Joshua B.</creatorcontrib><description>The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by &gt;4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003187</identifier><identifier>PMID: 23300488</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Amino Acids - chemistry ; Amino Acids - genetics ; Biodiversity ; Biology ; Chorismate Mutase - chemistry ; Chorismate Mutase - genetics ; Directed Molecular Evolution ; Enzymes ; Experiments ; Gene expression ; Genetic Code ; Genetics ; Inventors ; Life Sciences ; Methanococcales - genetics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mutagenesis ; Plasmids ; Point Mutation ; Populations and Evolution ; Protein Conformation ; Protein Stability ; Proteins ; Proteins - genetics ; Structure-Activity Relationship</subject><ispartof>PLoS genetics, 2013-01, Vol.9 (1), p.e1003187</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Müller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Müller MM, Allison JR, Hongdilokkul N, Gaillon L, Kast P, et al. (2013) Directed Evolution of a Model Primordial Enzyme Provides Insights into the Development of the Genetic Code. PLoS Genet 9(1): e1003187. doi:10.1371/journal.pgen.1003187</rights><rights>Attribution</rights><rights>2013 Müller et al 2013 Müller et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-747b5ebec8ecf4cf986e71246ec593289863d87033d7c1591b86e31bffdf07ba3</citedby><cites>FETCH-LOGICAL-c760t-747b5ebec8ecf4cf986e71246ec593289863d87033d7c1591b86e31bffdf07ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536711/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536711/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23300488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-04669715$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Plotkin, Joshua B.</contributor><creatorcontrib>Müller, Manuel M</creatorcontrib><creatorcontrib>Allison, Jane R</creatorcontrib><creatorcontrib>Hongdilokkul, Narupat</creatorcontrib><creatorcontrib>Gaillon, Laurent</creatorcontrib><creatorcontrib>Kast, Peter</creatorcontrib><creatorcontrib>van Gunsteren, Wilfred F</creatorcontrib><creatorcontrib>Marlière, Philippe</creatorcontrib><creatorcontrib>Hilvert, Donald</creatorcontrib><title>Directed evolution of a model primordial enzyme provides insights into the development of the genetic code</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by &gt;4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>Biodiversity</subject><subject>Biology</subject><subject>Chorismate Mutase - chemistry</subject><subject>Chorismate Mutase - genetics</subject><subject>Directed Molecular Evolution</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic Code</subject><subject>Genetics</subject><subject>Inventors</subject><subject>Life Sciences</subject><subject>Methanococcales - genetics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Plasmids</subject><subject>Point Mutation</subject><subject>Populations and Evolution</subject><subject>Protein Conformation</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Structure-Activity Relationship</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLgrAXMyZN27Q3wrB-7MDggl-3IU1O2gxtMybp4PrrTZ3uMhUFpRdNT5_znvOe9kTRU4xWmFD8amcG2_N2ta-hX2GECC7ovegcZxlZ0hSl90_OZ9Ej53aByYqSPozOEkIQSoviPNq90RaEBxnDwbSD16aPjYp53BkJbby3ujNWat7G0P-46SBEzEFLcLHuna4bPx68iX0DsYQDtGbfQe9HjTEUegOvRSyC2uPogeKtgyfTfRF9eff28-XVcnv9fnO53i4FzZEP_dIqgwpEAUKlQpVFDhQnaQ4iK0lShGciC4oIkVTgrMRVAAiulJIK0YqTRfT8qLtvjWPTmBzDBKckxWXwvog2R0IavmOjR25vmOGa_QoYWzNuQ9stMKTygipZqYTmKS8FpzShhKgMybxI5Fjt9VRtqDqQIpi3vJ2Jzt_0umG1OTCSkZxiHAQujgLNb2lX6y0TwBlK87ykODuM7IupmDXfBnD-L_YmqubBge6VCYVFp51ga5KgJE-zBAVq9QcqXBI6LUwPSof4LOFilhAYD999zQfn2ObTx_9gP_w7e_11zr48YRvgrW_c9N-6OZgeQWGNcxbU3WgxYuP-3E6OjfvDpv0Jac9Ov-Zd0u3CkJ_9iBR0</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Müller, Manuel M</creator><creator>Allison, Jane R</creator><creator>Hongdilokkul, Narupat</creator><creator>Gaillon, Laurent</creator><creator>Kast, Peter</creator><creator>van Gunsteren, Wilfred F</creator><creator>Marlière, Philippe</creator><creator>Hilvert, Donald</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Directed evolution of a model primordial enzyme provides insights into the development of the genetic code</title><author>Müller, Manuel M ; Allison, Jane R ; Hongdilokkul, Narupat ; Gaillon, Laurent ; Kast, Peter ; van Gunsteren, Wilfred F ; Marlière, Philippe ; Hilvert, Donald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-747b5ebec8ecf4cf986e71246ec593289863d87033d7c1591b86e31bffdf07ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>Biodiversity</topic><topic>Biology</topic><topic>Chorismate Mutase - chemistry</topic><topic>Chorismate Mutase - genetics</topic><topic>Directed Molecular Evolution</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic Code</topic><topic>Genetics</topic><topic>Inventors</topic><topic>Life Sciences</topic><topic>Methanococcales - genetics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Plasmids</topic><topic>Point Mutation</topic><topic>Populations and Evolution</topic><topic>Protein Conformation</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Manuel M</creatorcontrib><creatorcontrib>Allison, Jane R</creatorcontrib><creatorcontrib>Hongdilokkul, Narupat</creatorcontrib><creatorcontrib>Gaillon, Laurent</creatorcontrib><creatorcontrib>Kast, Peter</creatorcontrib><creatorcontrib>van Gunsteren, Wilfred F</creatorcontrib><creatorcontrib>Marlière, Philippe</creatorcontrib><creatorcontrib>Hilvert, Donald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Manuel M</au><au>Allison, Jane R</au><au>Hongdilokkul, Narupat</au><au>Gaillon, Laurent</au><au>Kast, Peter</au><au>van Gunsteren, Wilfred F</au><au>Marlière, Philippe</au><au>Hilvert, Donald</au><au>Plotkin, Joshua B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed evolution of a model primordial enzyme provides insights into the development of the genetic code</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>9</volume><issue>1</issue><spage>e1003187</spage><pages>e1003187-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by &gt;4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23300488</pmid><doi>10.1371/journal.pgen.1003187</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2013-01, Vol.9 (1), p.e1003187
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1314341923
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino Acid Sequence
Amino Acid Substitution
Amino acids
Amino Acids - chemistry
Amino Acids - genetics
Biodiversity
Biology
Chorismate Mutase - chemistry
Chorismate Mutase - genetics
Directed Molecular Evolution
Enzymes
Experiments
Gene expression
Genetic Code
Genetics
Inventors
Life Sciences
Methanococcales - genetics
Molecular Dynamics Simulation
Molecular Sequence Data
Mutagenesis
Plasmids
Point Mutation
Populations and Evolution
Protein Conformation
Protein Stability
Proteins
Proteins - genetics
Structure-Activity Relationship
title Directed evolution of a model primordial enzyme provides insights into the development of the genetic code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20evolution%20of%20a%20model%20primordial%20enzyme%20provides%20insights%20into%20the%20development%20of%20the%20genetic%20code&rft.jtitle=PLoS%20genetics&rft.au=M%C3%BCller,%20Manuel%20M&rft.date=2013-01-01&rft.volume=9&rft.issue=1&rft.spage=e1003187&rft.pages=e1003187-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003187&rft_dat=%3Cgale_plos_%3EA320264520%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314341923&rft_id=info:pmid/23300488&rft_galeid=A320264520&rft_doaj_id=oai_doaj_org_article_0f687fdbf2764a9ca772733f50d682da&rfr_iscdi=true