GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2012-02, Vol.8 (2), p.e1002526-e1002526
Hauptverfasser: Stafa, Klodjan, Trancikova, Alzbeta, Webber, Philip J, Glauser, Liliane, West, Andrew B, Moore, Darren J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002526
container_issue 2
container_start_page e1002526
container_title PLoS genetics
container_volume 8
creator Stafa, Klodjan
Trancikova, Alzbeta
Webber, Philip J
Glauser, Liliane
West, Andrew B
Moore, Darren J
description Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD.
doi_str_mv 10.1371/journal.pgen.1002526
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313631985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A282068737</galeid><doaj_id>oai_doaj_org_article_15797c1bcf4e4a1d82f5fa020e37e892</doaj_id><sourcerecordid>A282068737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-a3d33714728f92db87026183d2623ab64f78490cde1521774d261a400f4f147d3</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYqPwDxBEQmLiosUfSezcTKomKBUVq8rg1nL90bqkdrGdafv3uGs2NWgXYF_YOn7e9_jYOln2GoIRxAR-3LjWW96MditlRxAAVKLqSXYKyxIPSQGKp0f7k-xFCBsAcElr8jw7QQhXGMHqNFOTqzkPKucimmsTb3NuZW5V613yzqO7MWIfdTqfc__L2ODsWcilCSqphjwEJwyPSuazxeIryk3IvVq1zV1oeZuPvZ6M5_Bl9kzzJqhX3TrIfnz-dHXxZTi7nEwvxrOhIKiMQ44lTqUVBFFdI7mkBKAKUixRhTBfVoUmtKiBkAqWCBJSpAPICwB0oZNK4kH29uC7a1xg3QsFBjFM9cKalomYHgjp-IbtvNlyf8scN-wu4PyKcR-NaBSDJamJgEuhC1VwKCnSpeYAAYWJojVKXuddtna5VVIoGz1veqb9E2vWbOWuGUYU4DQG2Vln4N3vVoXItiYI1TTcKtcGlnKUhKZ7JPLdX-TjxXXUiqf7G6tdSiv2nmyMKAIVJXjvNXqESlOqrRHOKm1SvCf40BMkJqqbuOJtCGz6ffEf7Ld_Zy9_9tn3R-xa8Saug2vaaJwNfbA4gMK7ELzSD_8BAds3zv3LsX3jsK5xkuzN8V8-iO47Bf8B0ScPng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313631985</pqid></control><display><type>article</type><title>GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Stafa, Klodjan ; Trancikova, Alzbeta ; Webber, Philip J ; Glauser, Liliane ; West, Andrew B ; Moore, Darren J</creator><contributor>Orr, Harry T.</contributor><creatorcontrib>Stafa, Klodjan ; Trancikova, Alzbeta ; Webber, Philip J ; Glauser, Liliane ; West, Andrew B ; Moore, Darren J ; Orr, Harry T.</creatorcontrib><description>Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002526</identifier><identifier>PMID: 22363216</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biochemistry ; Biology ; Cell Biology ; Enzyme Activation ; Evacuations &amp; rescues ; Experiments ; Gene mutations ; Genetic aspects ; GTP Phosphohydrolases - metabolism ; GTPase-Activating Proteins - metabolism ; Guanosine triphosphatase ; Humans ; Hydrolysis ; Kinases ; Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 ; Medicine ; Microscopy ; Mutation ; Neurites - metabolism ; Neurites - pathology ; Neurodegeneration ; Neurological Disorders ; Neurons - metabolism ; Neurons - pathology ; Neuroscience ; Parkinson Disease - enzymology ; Parkinson Disease - genetics ; Parkinson Disease - pathology ; Parkinson's disease ; Phosphorylation ; Physiological aspects ; Physiology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Risk factors ; Toxicity</subject><ispartof>PLoS genetics, 2012-02, Vol.8 (2), p.e1002526-e1002526</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Stafa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, et al. (2012) GTPase Activity and Neuronal Toxicity of Parkinson's Disease-Associated LRRK2 Is Regulated by ArfGAP1. PLoS Genet 8(2): e1002526. doi:10.1371/journal.pgen.1002526</rights><rights>Stafa et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-a3d33714728f92db87026183d2623ab64f78490cde1521774d261a400f4f147d3</citedby><cites>FETCH-LOGICAL-c725t-a3d33714728f92db87026183d2623ab64f78490cde1521774d261a400f4f147d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280333/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280333/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22363216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Orr, Harry T.</contributor><creatorcontrib>Stafa, Klodjan</creatorcontrib><creatorcontrib>Trancikova, Alzbeta</creatorcontrib><creatorcontrib>Webber, Philip J</creatorcontrib><creatorcontrib>Glauser, Liliane</creatorcontrib><creatorcontrib>West, Andrew B</creatorcontrib><creatorcontrib>Moore, Darren J</creatorcontrib><title>GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD.</description><subject>Biochemistry</subject><subject>Biology</subject><subject>Cell Biology</subject><subject>Enzyme Activation</subject><subject>Evacuations &amp; rescues</subject><subject>Experiments</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Guanosine triphosphatase</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Kinases</subject><subject>Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</subject><subject>Medicine</subject><subject>Microscopy</subject><subject>Mutation</subject><subject>Neurites - metabolism</subject><subject>Neurites - pathology</subject><subject>Neurodegeneration</subject><subject>Neurological Disorders</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neuroscience</subject><subject>Parkinson Disease - enzymology</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>Toxicity</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYqPwDxBEQmLiosUfSezcTKomKBUVq8rg1nL90bqkdrGdafv3uGs2NWgXYF_YOn7e9_jYOln2GoIRxAR-3LjWW96MditlRxAAVKLqSXYKyxIPSQGKp0f7k-xFCBsAcElr8jw7QQhXGMHqNFOTqzkPKucimmsTb3NuZW5V613yzqO7MWIfdTqfc__L2ODsWcilCSqphjwEJwyPSuazxeIryk3IvVq1zV1oeZuPvZ6M5_Bl9kzzJqhX3TrIfnz-dHXxZTi7nEwvxrOhIKiMQ44lTqUVBFFdI7mkBKAKUixRhTBfVoUmtKiBkAqWCBJSpAPICwB0oZNK4kH29uC7a1xg3QsFBjFM9cKalomYHgjp-IbtvNlyf8scN-wu4PyKcR-NaBSDJamJgEuhC1VwKCnSpeYAAYWJojVKXuddtna5VVIoGz1veqb9E2vWbOWuGUYU4DQG2Vln4N3vVoXItiYI1TTcKtcGlnKUhKZ7JPLdX-TjxXXUiqf7G6tdSiv2nmyMKAIVJXjvNXqESlOqrRHOKm1SvCf40BMkJqqbuOJtCGz6ffEf7Ld_Zy9_9tn3R-xa8Saug2vaaJwNfbA4gMK7ELzSD_8BAds3zv3LsX3jsK5xkuzN8V8-iO47Bf8B0ScPng</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Stafa, Klodjan</creator><creator>Trancikova, Alzbeta</creator><creator>Webber, Philip J</creator><creator>Glauser, Liliane</creator><creator>West, Andrew B</creator><creator>Moore, Darren J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120201</creationdate><title>GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1</title><author>Stafa, Klodjan ; Trancikova, Alzbeta ; Webber, Philip J ; Glauser, Liliane ; West, Andrew B ; Moore, Darren J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-a3d33714728f92db87026183d2623ab64f78490cde1521774d261a400f4f147d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Biology</topic><topic>Cell Biology</topic><topic>Enzyme Activation</topic><topic>Evacuations &amp; rescues</topic><topic>Experiments</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Guanosine triphosphatase</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Kinases</topic><topic>Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</topic><topic>Medicine</topic><topic>Microscopy</topic><topic>Mutation</topic><topic>Neurites - metabolism</topic><topic>Neurites - pathology</topic><topic>Neurodegeneration</topic><topic>Neurological Disorders</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neuroscience</topic><topic>Parkinson Disease - enzymology</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stafa, Klodjan</creatorcontrib><creatorcontrib>Trancikova, Alzbeta</creatorcontrib><creatorcontrib>Webber, Philip J</creatorcontrib><creatorcontrib>Glauser, Liliane</creatorcontrib><creatorcontrib>West, Andrew B</creatorcontrib><creatorcontrib>Moore, Darren J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stafa, Klodjan</au><au>Trancikova, Alzbeta</au><au>Webber, Philip J</au><au>Glauser, Liliane</au><au>West, Andrew B</au><au>Moore, Darren J</au><au>Orr, Harry T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>8</volume><issue>2</issue><spage>e1002526</spage><epage>e1002526</epage><pages>e1002526-e1002526</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22363216</pmid><doi>10.1371/journal.pgen.1002526</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2012-02, Vol.8 (2), p.e1002526-e1002526
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313631985
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biochemistry
Biology
Cell Biology
Enzyme Activation
Evacuations & rescues
Experiments
Gene mutations
Genetic aspects
GTP Phosphohydrolases - metabolism
GTPase-Activating Proteins - metabolism
Guanosine triphosphatase
Humans
Hydrolysis
Kinases
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
Medicine
Microscopy
Mutation
Neurites - metabolism
Neurites - pathology
Neurodegeneration
Neurological Disorders
Neurons - metabolism
Neurons - pathology
Neuroscience
Parkinson Disease - enzymology
Parkinson Disease - genetics
Parkinson Disease - pathology
Parkinson's disease
Phosphorylation
Physiological aspects
Physiology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteins
Risk factors
Toxicity
title GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GTPase%20activity%20and%20neuronal%20toxicity%20of%20Parkinson's%20disease-associated%20LRRK2%20is%20regulated%20by%20ArfGAP1&rft.jtitle=PLoS%20genetics&rft.au=Stafa,%20Klodjan&rft.date=2012-02-01&rft.volume=8&rft.issue=2&rft.spage=e1002526&rft.epage=e1002526&rft.pages=e1002526-e1002526&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002526&rft_dat=%3Cgale_plos_%3EA282068737%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313631985&rft_id=info:pmid/22363216&rft_galeid=A282068737&rft_doaj_id=oai_doaj_org_article_15797c1bcf4e4a1d82f5fa020e37e892&rfr_iscdi=true