Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis

A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2012-04, Vol.8 (4), p.e1002649-e1002649
Hauptverfasser: Hao, Hong, Kim, Douglas S, Klocke, Bernward, Johnson, Kory R, Cui, Kairong, Gotoh, Norimoto, Zang, Chongzhi, Gregorski, Janina, Gieser, Linn, Peng, Weiqun, Fann, Yang, Seifert, Martin, Zhao, Keji, Swaroop, Anand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002649
container_issue 4
container_start_page e1002649
container_title PLoS genetics
container_volume 8
creator Hao, Hong
Kim, Douglas S
Klocke, Bernward
Johnson, Kory R
Cui, Kairong
Gotoh, Norimoto
Zang, Chongzhi
Gregorski, Janina
Gieser, Linn
Peng, Weiqun
Fann, Yang
Seifert, Martin
Zhao, Keji
Swaroop, Anand
description A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.
doi_str_mv 10.1371/journal.pgen.1002649
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313574733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A289431550</galeid><doaj_id>oai_doaj_org_article_00af419cad1b4925b1045418b2ca1f58</doaj_id><sourcerecordid>A289431550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-fcf0dbdd53d467955c5ede6fec2a66727363301a256e364ac012453148bc0a803</originalsourceid><addsrcrecordid>eNqVk1trFDEUxwdRbK1-A9GAIPqwa65zeRFK8bKwtFCrryGTOTObMjsZk8zifnsz7rTsSB-UPOT2O_-TnEuSvCR4SVhGPtzawXWqXfYNdEuCMU158Sg5JUKwRcYxf3y0PkmeeX-LMRN5kT1NTigVhOR5eprUN051XjvTB2OjHHLQDK0aN8jWyNkK9RsbrAMNfZzQxm7B-qC88ZHdgWqhQuUemQ7tzM6iy-s1Cso1ECKIVJTcR_R58qRWrYcX03yWfP_86ebi62J99WV1cb5e6KygYVHrGldlVQlW8TQrhNACKkhr0FSlaUYzljKGiaIiBZZypTGhXDDC81JjlWN2lrw-6Pat9XIKkZeEESYynjEWidWBqKy6lb0zW-X20ioj_xxY10jlgtEtSIxVzUmhVUVKXlBREswFJ3lJtSK1yKPWx8nbUG6h0tAFp9qZ6PymMxvZ2J1kjAqKaRR4Nwk4-3MAH-TWeA1tqzqwQ3x3TGsMA2bjz978hT78u4lqYl6k6Wob_epRVJ7TvOAslsSotXyAiqOCrdG2g9rE85nB-5lBZAL8Co0avJerb9f_wV7-O3v1Y86-PWI3sfDCxtt2GEvVz0F-ALWz3juo7xNCsBxb5y5ycmwdObVONHt1nMx7o7teYb8B5GsTJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313574733</pqid></control><display><type>article</type><title>Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hao, Hong ; Kim, Douglas S ; Klocke, Bernward ; Johnson, Kory R ; Cui, Kairong ; Gotoh, Norimoto ; Zang, Chongzhi ; Gregorski, Janina ; Gieser, Linn ; Peng, Weiqun ; Fann, Yang ; Seifert, Martin ; Zhao, Keji ; Swaroop, Anand</creator><contributor>Barsh, Gregory S.</contributor><creatorcontrib>Hao, Hong ; Kim, Douglas S ; Klocke, Bernward ; Johnson, Kory R ; Cui, Kairong ; Gotoh, Norimoto ; Zang, Chongzhi ; Gregorski, Janina ; Gieser, Linn ; Peng, Weiqun ; Fann, Yang ; Seifert, Martin ; Zhao, Keji ; Swaroop, Anand ; Barsh, Gregory S.</creatorcontrib><description>A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002649</identifier><identifier>PMID: 22511886</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apoptosis ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Binding Sites ; Biology ; Disease ; Disease Models, Animal ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Gene expression ; Gene Knockdown Techniques ; Gene Regulatory Networks ; Genetic aspects ; Genetic regulation ; Genetic transcription ; High-Throughput Nucleotide Sequencing ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Homeostasis ; Homeostasis - genetics ; Humans ; Jumonji Domain-Containing Histone Demethylases - genetics ; Jumonji Domain-Containing Histone Demethylases - metabolism ; Medicine ; Mice ; Mice, Inbred C57BL ; Neurons - metabolism ; Photoreceptors ; Physiological aspects ; Retina - metabolism ; Retina - physiology ; Retinal Dystrophies - genetics ; Retinal Dystrophies - metabolism ; Retinal Rod Photoreceptor Cells - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2012-04, Vol.8 (4), p.e1002649-e1002649</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hao H, Kim DS, Klocke B, Johnson KR, Cui K, et al. (2012) Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis. PLoS Genet 8(4): e1002649. doi:10.1371/journal.pgen.1002649</rights><rights>This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 2012</rights><rights>2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hao H, Kim DS, Klocke B, Johnson KR, Cui K, et al. (2012) Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis. PLoS Genet 8(4): e1002649. doi:10.1371/journal.pgen.1002649</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-fcf0dbdd53d467955c5ede6fec2a66727363301a256e364ac012453148bc0a803</citedby><cites>FETCH-LOGICAL-c792t-fcf0dbdd53d467955c5ede6fec2a66727363301a256e364ac012453148bc0a803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325202/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325202/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22511886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Barsh, Gregory S.</contributor><creatorcontrib>Hao, Hong</creatorcontrib><creatorcontrib>Kim, Douglas S</creatorcontrib><creatorcontrib>Klocke, Bernward</creatorcontrib><creatorcontrib>Johnson, Kory R</creatorcontrib><creatorcontrib>Cui, Kairong</creatorcontrib><creatorcontrib>Gotoh, Norimoto</creatorcontrib><creatorcontrib>Zang, Chongzhi</creatorcontrib><creatorcontrib>Gregorski, Janina</creatorcontrib><creatorcontrib>Gieser, Linn</creatorcontrib><creatorcontrib>Peng, Weiqun</creatorcontrib><creatorcontrib>Fann, Yang</creatorcontrib><creatorcontrib>Seifert, Martin</creatorcontrib><creatorcontrib>Zhao, Keji</creatorcontrib><creatorcontrib>Swaroop, Anand</creatorcontrib><title>Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Binding Sites</subject><subject>Biology</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Regulatory Networks</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetic transcription</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Humans</subject><subject>Jumonji Domain-Containing Histone Demethylases - genetics</subject><subject>Jumonji Domain-Containing Histone Demethylases - metabolism</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurons - metabolism</subject><subject>Photoreceptors</subject><subject>Physiological aspects</subject><subject>Retina - metabolism</subject><subject>Retina - physiology</subject><subject>Retinal Dystrophies - genetics</subject><subject>Retinal Dystrophies - metabolism</subject><subject>Retinal Rod Photoreceptor Cells - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1trFDEUxwdRbK1-A9GAIPqwa65zeRFK8bKwtFCrryGTOTObMjsZk8zifnsz7rTsSB-UPOT2O_-TnEuSvCR4SVhGPtzawXWqXfYNdEuCMU158Sg5JUKwRcYxf3y0PkmeeX-LMRN5kT1NTigVhOR5eprUN051XjvTB2OjHHLQDK0aN8jWyNkK9RsbrAMNfZzQxm7B-qC88ZHdgWqhQuUemQ7tzM6iy-s1Cso1ECKIVJTcR_R58qRWrYcX03yWfP_86ebi62J99WV1cb5e6KygYVHrGldlVQlW8TQrhNACKkhr0FSlaUYzljKGiaIiBZZypTGhXDDC81JjlWN2lrw-6Pat9XIKkZeEESYynjEWidWBqKy6lb0zW-X20ioj_xxY10jlgtEtSIxVzUmhVUVKXlBREswFJ3lJtSK1yKPWx8nbUG6h0tAFp9qZ6PymMxvZ2J1kjAqKaRR4Nwk4-3MAH-TWeA1tqzqwQ3x3TGsMA2bjz978hT78u4lqYl6k6Wob_epRVJ7TvOAslsSotXyAiqOCrdG2g9rE85nB-5lBZAL8Co0avJerb9f_wV7-O3v1Y86-PWI3sfDCxtt2GEvVz0F-ALWz3juo7xNCsBxb5y5ycmwdObVONHt1nMx7o7teYb8B5GsTJQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Hao, Hong</creator><creator>Kim, Douglas S</creator><creator>Klocke, Bernward</creator><creator>Johnson, Kory R</creator><creator>Cui, Kairong</creator><creator>Gotoh, Norimoto</creator><creator>Zang, Chongzhi</creator><creator>Gregorski, Janina</creator><creator>Gieser, Linn</creator><creator>Peng, Weiqun</creator><creator>Fann, Yang</creator><creator>Seifert, Martin</creator><creator>Zhao, Keji</creator><creator>Swaroop, Anand</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120401</creationdate><title>Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis</title><author>Hao, Hong ; Kim, Douglas S ; Klocke, Bernward ; Johnson, Kory R ; Cui, Kairong ; Gotoh, Norimoto ; Zang, Chongzhi ; Gregorski, Janina ; Gieser, Linn ; Peng, Weiqun ; Fann, Yang ; Seifert, Martin ; Zhao, Keji ; Swaroop, Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-fcf0dbdd53d467955c5ede6fec2a66727363301a256e364ac012453148bc0a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Binding Sites</topic><topic>Biology</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Regulatory Networks</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetic transcription</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Humans</topic><topic>Jumonji Domain-Containing Histone Demethylases - genetics</topic><topic>Jumonji Domain-Containing Histone Demethylases - metabolism</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurons - metabolism</topic><topic>Photoreceptors</topic><topic>Physiological aspects</topic><topic>Retina - metabolism</topic><topic>Retina - physiology</topic><topic>Retinal Dystrophies - genetics</topic><topic>Retinal Dystrophies - metabolism</topic><topic>Retinal Rod Photoreceptor Cells - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Hong</creatorcontrib><creatorcontrib>Kim, Douglas S</creatorcontrib><creatorcontrib>Klocke, Bernward</creatorcontrib><creatorcontrib>Johnson, Kory R</creatorcontrib><creatorcontrib>Cui, Kairong</creatorcontrib><creatorcontrib>Gotoh, Norimoto</creatorcontrib><creatorcontrib>Zang, Chongzhi</creatorcontrib><creatorcontrib>Gregorski, Janina</creatorcontrib><creatorcontrib>Gieser, Linn</creatorcontrib><creatorcontrib>Peng, Weiqun</creatorcontrib><creatorcontrib>Fann, Yang</creatorcontrib><creatorcontrib>Seifert, Martin</creatorcontrib><creatorcontrib>Zhao, Keji</creatorcontrib><creatorcontrib>Swaroop, Anand</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Hong</au><au>Kim, Douglas S</au><au>Klocke, Bernward</au><au>Johnson, Kory R</au><au>Cui, Kairong</au><au>Gotoh, Norimoto</au><au>Zang, Chongzhi</au><au>Gregorski, Janina</au><au>Gieser, Linn</au><au>Peng, Weiqun</au><au>Fann, Yang</au><au>Seifert, Martin</au><au>Zhao, Keji</au><au>Swaroop, Anand</au><au>Barsh, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>8</volume><issue>4</issue><spage>e1002649</spage><epage>e1002649</epage><pages>e1002649-e1002649</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22511886</pmid><doi>10.1371/journal.pgen.1002649</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2012-04, Vol.8 (4), p.e1002649-e1002649
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313574733
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Apoptosis
Basic-Leucine Zipper Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - metabolism
Binding Sites
Biology
Disease
Disease Models, Animal
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Eye Proteins - genetics
Eye Proteins - metabolism
Gene expression
Gene Knockdown Techniques
Gene Regulatory Networks
Genetic aspects
Genetic regulation
Genetic transcription
High-Throughput Nucleotide Sequencing
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Homeostasis
Homeostasis - genetics
Humans
Jumonji Domain-Containing Histone Demethylases - genetics
Jumonji Domain-Containing Histone Demethylases - metabolism
Medicine
Mice
Mice, Inbred C57BL
Neurons - metabolism
Photoreceptors
Physiological aspects
Retina - metabolism
Retina - physiology
Retinal Dystrophies - genetics
Retinal Dystrophies - metabolism
Retinal Rod Photoreceptor Cells - metabolism
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20regulation%20of%20rod%20photoreceptor%20homeostasis%20revealed%20by%20in%20vivo%20NRL%20targetome%20analysis&rft.jtitle=PLoS%20genetics&rft.au=Hao,%20Hong&rft.date=2012-04-01&rft.volume=8&rft.issue=4&rft.spage=e1002649&rft.epage=e1002649&rft.pages=e1002649-e1002649&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002649&rft_dat=%3Cgale_plos_%3EA289431550%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313574733&rft_id=info:pmid/22511886&rft_galeid=A289431550&rft_doaj_id=oai_doaj_org_article_00af419cad1b4925b1045418b2ca1f58&rfr_iscdi=true