The stringent response and cell cycle arrest in Escherichia coli
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after tr...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2008-12, Vol.4 (12), p.e1000300-e1000300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000300 |
---|---|
container_issue | 12 |
container_start_page | e1000300 |
container_title | PLoS genetics |
container_volume | 4 |
creator | Ferullo, Daniel J Lovett, Susan T |
description | The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions. |
doi_str_mv | 10.1371/journal.pgen.1000300 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313570121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202372401</galeid><doaj_id>oai_doaj_org_article_5449507659fd409d93f3f8091111e800</doaj_id><sourcerecordid>A202372401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-6cacf69324b7d0d4499cf935a70f2823339d282910a2a7736641e3ea73591acb3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoMo7jr6D0QLwoIXM-azaW7EZVl1YHFBV29DJk3aDJlmNmnF_femTtUpCGp7kTZ5zns478kB4CmCK0Q4erUNQ-yUX-0b060QhJBAeA-cIsbIklNI7x99n4BHKW0zwirBH4ITJCAXjLNT8OamNUXqo-uyTF9Ek_ahS6ZQXV1o432h77TPvzGf9IXrisukWxOdbp0qdPDuMXhglU_mybQuwOe3lzcX75dX1-_WF-dXS80x75elVtqWgmC64TWsKRVCW0GY4tDiChNCRJ1XgaDCinNSlhQZYhQnTCClN2QBnh909z4kORWfJCKIMA4RRplYH4g6qK3cR7dT8U4G5eSPjRAbqWLvcjmS5fwM8pIJW1MoakEssRUUKD-myj4twOsp27DZmVpnb6LyM9H5Seda2YSvErOqLMtR4GwSiOF2yN7JnUujoaozYUiyFJUQgpK_gjj3lSM-Kr44gI3KFbjOhpxYj7A8xxATjikcTVj9gcpvbXZOh85Yl_dnAS9nAZnpzbe-UUNKcv3p43-wH_6dvf4yZ8-O2NYo37cp-KF3-S7OQXoAdQwpRWN_dQRBOU7Fz4shx6mQ01TksGfH3fwdNI0B-Q7gZgNS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20307170</pqid></control><display><type>article</type><title>The stringent response and cell cycle arrest in Escherichia coli</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Ferullo, Daniel J ; Lovett, Susan T</creator><contributor>Burkholder, William F.</contributor><creatorcontrib>Ferullo, Daniel J ; Lovett, Susan T ; Burkholder, William F.</creatorcontrib><description>The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000300</identifier><identifier>PMID: 19079575</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Cell Cycle ; Chromosome Segregation ; Chromosomes ; Chromosomes, Bacterial - genetics ; DNA methylation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Genetics and Genomics/Chromosome Biology ; Microbiology ; Microbiology/Microbial Growth and Development ; Microbiology/Microbial Physiology and Metabolism ; Mutation ; Origin Recognition Complex - genetics ; Origin Recognition Complex - metabolism ; Replication Origin ; Site-Specific DNA-Methyltransferase (Adenine-Specific) - genetics ; Site-Specific DNA-Methyltransferase (Adenine-Specific) - metabolism</subject><ispartof>PLoS genetics, 2008-12, Vol.4 (12), p.e1000300-e1000300</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Ferullo, Lovett. 2008</rights><rights>2008 Ferullo, Lovett. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ferullo DJ, Lovett ST (2008) The Stringent Response and Cell Cycle Arrest in Escherichia coli. PLoS Genet 4(12): e1000300. doi:10.1371/journal.pgen.1000300</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-6cacf69324b7d0d4499cf935a70f2823339d282910a2a7736641e3ea73591acb3</citedby><cites>FETCH-LOGICAL-c727t-6cacf69324b7d0d4499cf935a70f2823339d282910a2a7736641e3ea73591acb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19079575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Burkholder, William F.</contributor><creatorcontrib>Ferullo, Daniel J</creatorcontrib><creatorcontrib>Lovett, Susan T</creatorcontrib><title>The stringent response and cell cycle arrest in Escherichia coli</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.</description><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Cell Cycle</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>DNA methylation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Genetics and Genomics/Chromosome Biology</subject><subject>Microbiology</subject><subject>Microbiology/Microbial Growth and Development</subject><subject>Microbiology/Microbial Physiology and Metabolism</subject><subject>Mutation</subject><subject>Origin Recognition Complex - genetics</subject><subject>Origin Recognition Complex - metabolism</subject><subject>Replication Origin</subject><subject>Site-Specific DNA-Methyltransferase (Adenine-Specific) - genetics</subject><subject>Site-Specific DNA-Methyltransferase (Adenine-Specific) - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoMo7jr6D0QLwoIXM-azaW7EZVl1YHFBV29DJk3aDJlmNmnF_femTtUpCGp7kTZ5zns478kB4CmCK0Q4erUNQ-yUX-0b060QhJBAeA-cIsbIklNI7x99n4BHKW0zwirBH4ITJCAXjLNT8OamNUXqo-uyTF9Ek_ahS6ZQXV1o432h77TPvzGf9IXrisukWxOdbp0qdPDuMXhglU_mybQuwOe3lzcX75dX1-_WF-dXS80x75elVtqWgmC64TWsKRVCW0GY4tDiChNCRJ1XgaDCinNSlhQZYhQnTCClN2QBnh909z4kORWfJCKIMA4RRplYH4g6qK3cR7dT8U4G5eSPjRAbqWLvcjmS5fwM8pIJW1MoakEssRUUKD-myj4twOsp27DZmVpnb6LyM9H5Seda2YSvErOqLMtR4GwSiOF2yN7JnUujoaozYUiyFJUQgpK_gjj3lSM-Kr44gI3KFbjOhpxYj7A8xxATjikcTVj9gcpvbXZOh85Yl_dnAS9nAZnpzbe-UUNKcv3p43-wH_6dvf4yZ8-O2NYo37cp-KF3-S7OQXoAdQwpRWN_dQRBOU7Fz4shx6mQ01TksGfH3fwdNI0B-Q7gZgNS</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Ferullo, Daniel J</creator><creator>Lovett, Susan T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081201</creationdate><title>The stringent response and cell cycle arrest in Escherichia coli</title><author>Ferullo, Daniel J ; Lovett, Susan T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-6cacf69324b7d0d4499cf935a70f2823339d282910a2a7736641e3ea73591acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Cell Cycle</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>DNA methylation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Genetics and Genomics/Chromosome Biology</topic><topic>Microbiology</topic><topic>Microbiology/Microbial Growth and Development</topic><topic>Microbiology/Microbial Physiology and Metabolism</topic><topic>Mutation</topic><topic>Origin Recognition Complex - genetics</topic><topic>Origin Recognition Complex - metabolism</topic><topic>Replication Origin</topic><topic>Site-Specific DNA-Methyltransferase (Adenine-Specific) - genetics</topic><topic>Site-Specific DNA-Methyltransferase (Adenine-Specific) - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferullo, Daniel J</creatorcontrib><creatorcontrib>Lovett, Susan T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferullo, Daniel J</au><au>Lovett, Susan T</au><au>Burkholder, William F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stringent response and cell cycle arrest in Escherichia coli</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>4</volume><issue>12</issue><spage>e1000300</spage><epage>e1000300</epage><pages>e1000300-e1000300</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19079575</pmid><doi>10.1371/journal.pgen.1000300</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2008-12, Vol.4 (12), p.e1000300-e1000300 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313570121 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Bacterial Outer Membrane Proteins - genetics Bacterial Outer Membrane Proteins - metabolism Cell Cycle Chromosome Segregation Chromosomes Chromosomes, Bacterial - genetics DNA methylation DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Escherichia coli Escherichia coli - cytology Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Genetics and Genomics/Chromosome Biology Microbiology Microbiology/Microbial Growth and Development Microbiology/Microbial Physiology and Metabolism Mutation Origin Recognition Complex - genetics Origin Recognition Complex - metabolism Replication Origin Site-Specific DNA-Methyltransferase (Adenine-Specific) - genetics Site-Specific DNA-Methyltransferase (Adenine-Specific) - metabolism |
title | The stringent response and cell cycle arrest in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stringent%20response%20and%20cell%20cycle%20arrest%20in%20Escherichia%20coli&rft.jtitle=PLoS%20genetics&rft.au=Ferullo,%20Daniel%20J&rft.date=2008-12-01&rft.volume=4&rft.issue=12&rft.spage=e1000300&rft.epage=e1000300&rft.pages=e1000300-e1000300&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000300&rft_dat=%3Cgale_plos_%3EA202372401%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20307170&rft_id=info:pmid/19079575&rft_galeid=A202372401&rft_doaj_id=oai_doaj_org_article_5449507659fd409d93f3f8091111e800&rfr_iscdi=true |