A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear
Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2012-11, Vol.8 (11), p.e1003068-e1003068 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003068 |
---|---|
container_issue | 11 |
container_start_page | e1003068 |
container_title | PLoS genetics |
container_volume | 8 |
creator | Vemaraju, Shruti Kantarci, Husniye Padanad, Mahesh S Riley, Bruce B |
description | Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows. |
doi_str_mv | 10.1371/journal.pgen.1003068 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313560751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312014998</galeid><doaj_id>oai_doaj_org_article_9b500b04a115447cbfeddbe53930c090</doaj_id><sourcerecordid>A312014998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-ee97b60fb1b6fcd50e046992011fc4f7a88b5816878af3a92eb1798af242eb03</originalsourceid><addsrcrecordid>eNqVk1GL1DAQx4so3nn6DUQLgujDrsmmbdoXYTk8XTg80MPXkLaTbo40WZP08Hzyozt1e8dW7kHJQyaT3_wnM2GS5DklS8o4fXflBm-lWe46sEtKCCNF-SA5pnnOFjwj2cMD-yh5EsIVMnlZ8cfJ0YrRosgpP05-rdOwk1FLk0rbphH6nfN46LxsNdiYOpWedSpttVLg0YGkuUk9dIOREQJehKhtE9MQZYdn5C0Mo0QL12Dcrh9VtE3jFtKfUHupdNiiw4JPQfqnySMlTYBn036SXJ59uDz9tDi_-Lg5XZ8vGr4q4gKg4nVBVE3rQjVtToBkRVWtCKWqyRSXZVnnJS1KXkrFZLWCmvIK7VWGJmEnycu97M64IKbeBUEZZXlBeE6R2OyJ1skrsfO6l_5GOKnFH4fznZA-6saAqOqckJpkktI8y3hTK2jbGnJWMdKQasz2fso21D20DbYAOzITnd9YvRWduxYsqypWVCjwZhLw7vsAIYpehwaMkRbcgO_G4nJScDLmevUXen91E9VJLEBb5TBvM4qKNaPYRkxcIrW8h8LVQq8bZ0Fp9M8C3s4CkInwI3ZyCEFsvn75D_bzv7MX3-bs6wN2C9LEbXBmiNrZMAezPdh4F4IHdfchlIhxpm47J8aZEtNMYdiLw8-8C7odIvYbejEcXQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313560751</pqid></control><display><type>article</type><title>A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vemaraju, Shruti ; Kantarci, Husniye ; Padanad, Mahesh S ; Riley, Bruce B</creator><contributor>Goodrich, Lisa</contributor><creatorcontrib>Vemaraju, Shruti ; Kantarci, Husniye ; Padanad, Mahesh S ; Riley, Bruce B ; Goodrich, Lisa</creatorcontrib><description>Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003068</identifier><identifier>PMID: 23166517</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Cell cycle ; Cell Differentiation ; Cytogenetics ; Ear, Inner - growth & development ; Ear, Inner - innervation ; Ear, Inner - metabolism ; Embryonic development ; Epithelium - metabolism ; Fibroblast Growth Factor 5 - genetics ; Fibroblast Growth Factor 5 - metabolism ; Ganglion Cysts - metabolism ; Gene Expression Regulation, Developmental ; Genetic aspects ; Labeling ; Larva - growth & development ; Larva - metabolism ; Lasers ; Neurogenesis ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Physiological aspects ; Proteins ; RNA polymerase ; Signal Transduction ; Zebra fish ; Zebrafish ; Zebrafish - growth & development ; Zebrafish - metabolism</subject><ispartof>PLoS genetics, 2012-11, Vol.8 (11), p.e1003068-e1003068</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Vemaraju et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Vemaraju S, Kantarci H, Padanad MS, Riley BB (2012) A Spatial and Temporal Gradient of Fgf Differentially Regulates Distinct Stages of Neural Development in the Zebrafish Inner Ear. PLoS Genet 8(11): e1003068. doi:10.1371/journal.pgen.1003068</rights><rights>2012 Vemaraju et al 2012 Vemaraju et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-ee97b60fb1b6fcd50e046992011fc4f7a88b5816878af3a92eb1798af242eb03</citedby><cites>FETCH-LOGICAL-c726t-ee97b60fb1b6fcd50e046992011fc4f7a88b5816878af3a92eb1798af242eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499369/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499369/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23166517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Goodrich, Lisa</contributor><creatorcontrib>Vemaraju, Shruti</creatorcontrib><creatorcontrib>Kantarci, Husniye</creatorcontrib><creatorcontrib>Padanad, Mahesh S</creatorcontrib><creatorcontrib>Riley, Bruce B</creatorcontrib><title>A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.</description><subject>Animals</subject><subject>Biology</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cytogenetics</subject><subject>Ear, Inner - growth & development</subject><subject>Ear, Inner - innervation</subject><subject>Ear, Inner - metabolism</subject><subject>Embryonic development</subject><subject>Epithelium - metabolism</subject><subject>Fibroblast Growth Factor 5 - genetics</subject><subject>Fibroblast Growth Factor 5 - metabolism</subject><subject>Ganglion Cysts - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Labeling</subject><subject>Larva - growth & development</subject><subject>Larva - metabolism</subject><subject>Lasers</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Signal Transduction</subject><subject>Zebra fish</subject><subject>Zebrafish</subject><subject>Zebrafish - growth & development</subject><subject>Zebrafish - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1GL1DAQx4so3nn6DUQLgujDrsmmbdoXYTk8XTg80MPXkLaTbo40WZP08Hzyozt1e8dW7kHJQyaT3_wnM2GS5DklS8o4fXflBm-lWe46sEtKCCNF-SA5pnnOFjwj2cMD-yh5EsIVMnlZ8cfJ0YrRosgpP05-rdOwk1FLk0rbphH6nfN46LxsNdiYOpWedSpttVLg0YGkuUk9dIOREQJehKhtE9MQZYdn5C0Mo0QL12Dcrh9VtE3jFtKfUHupdNiiw4JPQfqnySMlTYBn036SXJ59uDz9tDi_-Lg5XZ8vGr4q4gKg4nVBVE3rQjVtToBkRVWtCKWqyRSXZVnnJS1KXkrFZLWCmvIK7VWGJmEnycu97M64IKbeBUEZZXlBeE6R2OyJ1skrsfO6l_5GOKnFH4fznZA-6saAqOqckJpkktI8y3hTK2jbGnJWMdKQasz2fso21D20DbYAOzITnd9YvRWduxYsqypWVCjwZhLw7vsAIYpehwaMkRbcgO_G4nJScDLmevUXen91E9VJLEBb5TBvM4qKNaPYRkxcIrW8h8LVQq8bZ0Fp9M8C3s4CkInwI3ZyCEFsvn75D_bzv7MX3-bs6wN2C9LEbXBmiNrZMAezPdh4F4IHdfchlIhxpm47J8aZEtNMYdiLw8-8C7odIvYbejEcXQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Vemaraju, Shruti</creator><creator>Kantarci, Husniye</creator><creator>Padanad, Mahesh S</creator><creator>Riley, Bruce B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear</title><author>Vemaraju, Shruti ; Kantarci, Husniye ; Padanad, Mahesh S ; Riley, Bruce B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-ee97b60fb1b6fcd50e046992011fc4f7a88b5816878af3a92eb1798af242eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cytogenetics</topic><topic>Ear, Inner - growth & development</topic><topic>Ear, Inner - innervation</topic><topic>Ear, Inner - metabolism</topic><topic>Embryonic development</topic><topic>Epithelium - metabolism</topic><topic>Fibroblast Growth Factor 5 - genetics</topic><topic>Fibroblast Growth Factor 5 - metabolism</topic><topic>Ganglion Cysts - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Labeling</topic><topic>Larva - growth & development</topic><topic>Larva - metabolism</topic><topic>Lasers</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Signal Transduction</topic><topic>Zebra fish</topic><topic>Zebrafish</topic><topic>Zebrafish - growth & development</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vemaraju, Shruti</creatorcontrib><creatorcontrib>Kantarci, Husniye</creatorcontrib><creatorcontrib>Padanad, Mahesh S</creatorcontrib><creatorcontrib>Riley, Bruce B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vemaraju, Shruti</au><au>Kantarci, Husniye</au><au>Padanad, Mahesh S</au><au>Riley, Bruce B</au><au>Goodrich, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>8</volume><issue>11</issue><spage>e1003068</spage><epage>e1003068</epage><pages>e1003068-e1003068</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23166517</pmid><doi>10.1371/journal.pgen.1003068</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2012-11, Vol.8 (11), p.e1003068-e1003068 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313560751 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biology Cell cycle Cell Differentiation Cytogenetics Ear, Inner - growth & development Ear, Inner - innervation Ear, Inner - metabolism Embryonic development Epithelium - metabolism Fibroblast Growth Factor 5 - genetics Fibroblast Growth Factor 5 - metabolism Ganglion Cysts - metabolism Gene Expression Regulation, Developmental Genetic aspects Labeling Larva - growth & development Larva - metabolism Lasers Neurogenesis Neurons Neurons - cytology Neurons - metabolism Physiological aspects Proteins RNA polymerase Signal Transduction Zebra fish Zebrafish Zebrafish - growth & development Zebrafish - metabolism |
title | A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatial%20and%20temporal%20gradient%20of%20Fgf%20differentially%20regulates%20distinct%20stages%20of%20neural%20development%20in%20the%20zebrafish%20inner%20ear&rft.jtitle=PLoS%20genetics&rft.au=Vemaraju,%20Shruti&rft.date=2012-11-01&rft.volume=8&rft.issue=11&rft.spage=e1003068&rft.epage=e1003068&rft.pages=e1003068-e1003068&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003068&rft_dat=%3Cgale_plos_%3EA312014998%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313560751&rft_id=info:pmid/23166517&rft_galeid=A312014998&rft_doaj_id=oai_doaj_org_article_9b500b04a115447cbfeddbe53930c090&rfr_iscdi=true |