A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division
Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes requi...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2012-03, Vol.8 (3), p.e1002590 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1002590 |
container_title | PLoS genetics |
container_volume | 8 |
creator | Hoose, Scott A Rawlings, Jeremy A Kelly, Michelle M Leitch, M Camille Ababneh, Qotaiba O Robles, Juan P Taylor, David Hoover, Evelyn M Hailu, Bethel McEnery, Kayla A Downing, S Sabina Kaushal, Deepika Chen, Yi Rife, Alex Brahmbhatt, Kirtan A Smith, 3rd, Roger Polymenis, Michael |
description | Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms. |
doi_str_mv | 10.1371/journal.pgen.1002590 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313560481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A287390797</galeid><doaj_id>oai_doaj_org_article_86c62f9125d44c6d97d2e0fded133899</doaj_id><sourcerecordid>A287390797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-2742d72ef8c4b45343c1748b02ad971f4c089204ebf99f60f93a27efce726f663</originalsourceid><addsrcrecordid>eNqVk2uL1DAUhoso7rr6D0QLguCHGXNr03wRhsXLwOKCt68hkyadLGkzJulg_Rn-YtOd7jAFBaWQhNPnvDm8JyfLnkKwhJjC1zeu952wy12juiUEABUM3MvOYVHgBSWA3D85n2WPQrgBABcVow-zM4QIripcnGe_VnkYQlStiEbmIgkOwYTc6Vwqa3M5SKtyr5reiuh8yE2XD0qEmGJ7JWzI41bEvHUpooW8RdKWsFrtVFq6aIejWjA_VR5dLl0XvbOJMtGki103IrXZm5DOj7MHOimrJ9N-kX199_bL5YfF1fX79eXqaiEpKuICUYJqipSuJNmQAhMsISXVBiBRMwo1kaBiCBC10YzpEmiGBaJKS0VRqcsSX2TPD7o76wKf7AwcYoiLEpAKJmJ9IGonbvjOm1b4gTth-G3A-YYLn3yzilelLJFmEBU1IbJMFdRIAV2rGmJcMZa03ky39ZtW1TI544Wdic7_dGbLG7fnGIOCFKPAi0nAu--9CvEvJU9UI1JVptMuicnWBMlXqKKYAcpoopZ_oNJXq9ak7ihtUnyW8GqWMHZQ_YiN6EPg68-f_oP9-O_s9bc5-_KE3abXF7fB2X58P2EOkgMovQvBK310GQI-zs6dc3ycHT7NTkp7dtqhY9LdsODf_2oV9g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313560481</pqid></control><display><type>article</type><title>A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Hoose, Scott A ; Rawlings, Jeremy A ; Kelly, Michelle M ; Leitch, M Camille ; Ababneh, Qotaiba O ; Robles, Juan P ; Taylor, David ; Hoover, Evelyn M ; Hailu, Bethel ; McEnery, Kayla A ; Downing, S Sabina ; Kaushal, Deepika ; Chen, Yi ; Rife, Alex ; Brahmbhatt, Kirtan A ; Smith, 3rd, Roger ; Polymenis, Michael</creator><creatorcontrib>Hoose, Scott A ; Rawlings, Jeremy A ; Kelly, Michelle M ; Leitch, M Camille ; Ababneh, Qotaiba O ; Robles, Juan P ; Taylor, David ; Hoover, Evelyn M ; Hailu, Bethel ; McEnery, Kayla A ; Downing, S Sabina ; Kaushal, Deepika ; Chen, Yi ; Rife, Alex ; Brahmbhatt, Kirtan A ; Smith, 3rd, Roger ; Polymenis, Michael</creatorcontrib><description>Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002590</identifier><identifier>PMID: 22438835</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cell cycle ; Cell division ; Cell Division - genetics ; Cell Proliferation ; Cell Size ; DNA - analysis ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; G1 Phase Cell Cycle Checkpoints - genetics ; Gene Deletion ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Genes ; Homozygote ; Physiological aspects ; Ribosomes - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Studies ; Yeast ; Yeast fungi</subject><ispartof>PLoS genetics, 2012-03, Vol.8 (3), p.e1002590</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Hoose et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, et al. (2012) A Systematic Analysis of Cell Cycle Regulators in Yeast Reveals That Most Factors Act Independently of Cell Size to Control Initiation of Division. PLoS Genet 8(3): e1002590. doi:10.1371/journal.pgen.1002590</rights><rights>Hoose et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-2742d72ef8c4b45343c1748b02ad971f4c089204ebf99f60f93a27efce726f663</citedby><cites>FETCH-LOGICAL-c725t-2742d72ef8c4b45343c1748b02ad971f4c089204ebf99f60f93a27efce726f663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22438835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoose, Scott A</creatorcontrib><creatorcontrib>Rawlings, Jeremy A</creatorcontrib><creatorcontrib>Kelly, Michelle M</creatorcontrib><creatorcontrib>Leitch, M Camille</creatorcontrib><creatorcontrib>Ababneh, Qotaiba O</creatorcontrib><creatorcontrib>Robles, Juan P</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><creatorcontrib>Hoover, Evelyn M</creatorcontrib><creatorcontrib>Hailu, Bethel</creatorcontrib><creatorcontrib>McEnery, Kayla A</creatorcontrib><creatorcontrib>Downing, S Sabina</creatorcontrib><creatorcontrib>Kaushal, Deepika</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Rife, Alex</creatorcontrib><creatorcontrib>Brahmbhatt, Kirtan A</creatorcontrib><creatorcontrib>Smith, 3rd, Roger</creatorcontrib><creatorcontrib>Polymenis, Michael</creatorcontrib><title>A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.</description><subject>Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>Cell Proliferation</subject><subject>Cell Size</subject><subject>DNA - analysis</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>G1 Phase Cell Cycle Checkpoints - genetics</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Homozygote</subject><subject>Physiological aspects</subject><subject>Ribosomes - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Studies</subject><subject>Yeast</subject><subject>Yeast fungi</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk2uL1DAUhoso7rr6D0QLguCHGXNr03wRhsXLwOKCt68hkyadLGkzJulg_Rn-YtOd7jAFBaWQhNPnvDm8JyfLnkKwhJjC1zeu952wy12juiUEABUM3MvOYVHgBSWA3D85n2WPQrgBABcVow-zM4QIripcnGe_VnkYQlStiEbmIgkOwYTc6Vwqa3M5SKtyr5reiuh8yE2XD0qEmGJ7JWzI41bEvHUpooW8RdKWsFrtVFq6aIejWjA_VR5dLl0XvbOJMtGki103IrXZm5DOj7MHOimrJ9N-kX199_bL5YfF1fX79eXqaiEpKuICUYJqipSuJNmQAhMsISXVBiBRMwo1kaBiCBC10YzpEmiGBaJKS0VRqcsSX2TPD7o76wKf7AwcYoiLEpAKJmJ9IGonbvjOm1b4gTth-G3A-YYLn3yzilelLJFmEBU1IbJMFdRIAV2rGmJcMZa03ky39ZtW1TI544Wdic7_dGbLG7fnGIOCFKPAi0nAu--9CvEvJU9UI1JVptMuicnWBMlXqKKYAcpoopZ_oNJXq9ak7ihtUnyW8GqWMHZQ_YiN6EPg68-f_oP9-O_s9bc5-_KE3abXF7fB2X58P2EOkgMovQvBK310GQI-zs6dc3ycHT7NTkp7dtqhY9LdsODf_2oV9g</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Hoose, Scott A</creator><creator>Rawlings, Jeremy A</creator><creator>Kelly, Michelle M</creator><creator>Leitch, M Camille</creator><creator>Ababneh, Qotaiba O</creator><creator>Robles, Juan P</creator><creator>Taylor, David</creator><creator>Hoover, Evelyn M</creator><creator>Hailu, Bethel</creator><creator>McEnery, Kayla A</creator><creator>Downing, S Sabina</creator><creator>Kaushal, Deepika</creator><creator>Chen, Yi</creator><creator>Rife, Alex</creator><creator>Brahmbhatt, Kirtan A</creator><creator>Smith, 3rd, Roger</creator><creator>Polymenis, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120301</creationdate><title>A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division</title><author>Hoose, Scott A ; Rawlings, Jeremy A ; Kelly, Michelle M ; Leitch, M Camille ; Ababneh, Qotaiba O ; Robles, Juan P ; Taylor, David ; Hoover, Evelyn M ; Hailu, Bethel ; McEnery, Kayla A ; Downing, S Sabina ; Kaushal, Deepika ; Chen, Yi ; Rife, Alex ; Brahmbhatt, Kirtan A ; Smith, 3rd, Roger ; Polymenis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-2742d72ef8c4b45343c1748b02ad971f4c089204ebf99f60f93a27efce726f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>Cell Proliferation</topic><topic>Cell Size</topic><topic>DNA - analysis</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>G1 Phase Cell Cycle Checkpoints - genetics</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Homozygote</topic><topic>Physiological aspects</topic><topic>Ribosomes - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Studies</topic><topic>Yeast</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoose, Scott A</creatorcontrib><creatorcontrib>Rawlings, Jeremy A</creatorcontrib><creatorcontrib>Kelly, Michelle M</creatorcontrib><creatorcontrib>Leitch, M Camille</creatorcontrib><creatorcontrib>Ababneh, Qotaiba O</creatorcontrib><creatorcontrib>Robles, Juan P</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><creatorcontrib>Hoover, Evelyn M</creatorcontrib><creatorcontrib>Hailu, Bethel</creatorcontrib><creatorcontrib>McEnery, Kayla A</creatorcontrib><creatorcontrib>Downing, S Sabina</creatorcontrib><creatorcontrib>Kaushal, Deepika</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Rife, Alex</creatorcontrib><creatorcontrib>Brahmbhatt, Kirtan A</creatorcontrib><creatorcontrib>Smith, 3rd, Roger</creatorcontrib><creatorcontrib>Polymenis, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoose, Scott A</au><au>Rawlings, Jeremy A</au><au>Kelly, Michelle M</au><au>Leitch, M Camille</au><au>Ababneh, Qotaiba O</au><au>Robles, Juan P</au><au>Taylor, David</au><au>Hoover, Evelyn M</au><au>Hailu, Bethel</au><au>McEnery, Kayla A</au><au>Downing, S Sabina</au><au>Kaushal, Deepika</au><au>Chen, Yi</au><au>Rife, Alex</au><au>Brahmbhatt, Kirtan A</au><au>Smith, 3rd, Roger</au><au>Polymenis, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>8</volume><issue>3</issue><spage>e1002590</spage><pages>e1002590-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22438835</pmid><doi>10.1371/journal.pgen.1002590</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2012-03, Vol.8 (3), p.e1002590 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313560481 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Biology Cell cycle Cell division Cell Division - genetics Cell Proliferation Cell Size DNA - analysis Fungal Proteins - genetics Fungal Proteins - metabolism G1 Phase Cell Cycle Checkpoints - genetics Gene Deletion Gene Expression Regulation, Fungal Gene Regulatory Networks Genes Homozygote Physiological aspects Ribosomes - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Studies Yeast Yeast fungi |
title | A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20analysis%20of%20cell%20cycle%20regulators%20in%20yeast%20reveals%20that%20most%20factors%20act%20independently%20of%20cell%20size%20to%20control%20initiation%20of%20division&rft.jtitle=PLoS%20genetics&rft.au=Hoose,%20Scott%20A&rft.date=2012-03-01&rft.volume=8&rft.issue=3&rft.spage=e1002590&rft.pages=e1002590-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002590&rft_dat=%3Cgale_plos_%3EA287390797%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313560481&rft_id=info:pmid/22438835&rft_galeid=A287390797&rft_doaj_id=oai_doaj_org_article_86c62f9125d44c6d97d2e0fded133899&rfr_iscdi=true |