Limits to the rate of adaptive substitution in sexual populations
In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, Λ,...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2012-06, Vol.8 (6), p.e1002740-e1002740 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002740 |
---|---|
container_issue | 6 |
container_start_page | e1002740 |
container_title | PLoS genetics |
container_volume | 8 |
creator | Weissman, Daniel B Barton, Nicholas H |
description | In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, Λ, that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is Λ₀ = 2NU , where N is the population size, U is the rate of beneficial mutations per genome, and is their mean selective advantage. Heritable variance v in log fitness due to unlinked loci reduces Λ by e⁻⁴(v) under polygamy and e⁻⁸ (v) under monogamy. With a linear genetic map of length R Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on s, N, U, and R only through the baseline density: Λ/R = F (Λ₀/R). Under the approximation that the interference due to different sweeps adds up, we show that Λ/R ~(Λ₀/R) / (1 +2Λ₉/R) , implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for Λ₀/R ~ 1; for higher Λ₀/R , the rate of adaptation grows above R/2, but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common-diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection. |
doi_str_mv | 10.1371/journal.pgen.1002740 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313548839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A304307837</galeid><doaj_id>oai_doaj_org_article_f9eb7a8fe910469ca26dade91ba8c858</doaj_id><sourcerecordid>A304307837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-dc5d6a8230e9c78d9977cb39e6ca5a2dc2f07ac9ad48a81b68e27c676a59110a3</originalsourceid><addsrcrecordid>eNqVk01v3CAQhq2qVZOm_QdVa6lS1R52CwYbuFRaRf1YadVI_bqiMWAvK69xDI7Sf1-cdaJ1lUMqDsDwzDszwCTJS4yWmDD8YeeGvoVm2dWmXWKEMkbRo-QU5zlZxCV9fLQ-SZ55v0OI5Fywp8lJlhU8p1icJquN3dvg0-DSsDVpD8GkrkpBQxfslUn9UPpgwxCsa1Pbpt5cD9CkneuGBkajf548qaDx5sU0nyW_Pn_6ef51sbn4sj5fbRaK5SIstMp1ATwjyAjFuBaCMVUSYQoFOWRaZRVioARoyoHjsuAmY6pgBeQCYwTkLHl90O0a5-VUvZeYYJJTzomIxPpAaAc72fV2D_0f6cDKG4Prawl9sKoxshKmZMArIzCihVCQFRp03JXAFc951Po4RRvKvdHKtKGHZiY6P2ntVtbuShJSCEHHZN5NAr27HIwPcm-9Mk0DrXFDzBtltCgQZuwhKEKUZYRE9M0_6P0XMVE1xFptW7mYohpF5YogShDjZAy7vIeKQ5u9Va41lY32mcP7mUNkgrkONQzey_WP7__Bfns4e_F7zr49YrcGmrD1rrn5n34O0gOoeud9b6q7t8NIjg10e3NybCA5NVB0e3X87ndOtx1D_gI07BQp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313548839</pqid></control><display><type>article</type><title>Limits to the rate of adaptive substitution in sexual populations</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Weissman, Daniel B ; Barton, Nicholas H</creator><creatorcontrib>Weissman, Daniel B ; Barton, Nicholas H</creatorcontrib><description>In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, Λ, that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is Λ₀ = 2NU , where N is the population size, U is the rate of beneficial mutations per genome, and is their mean selective advantage. Heritable variance v in log fitness due to unlinked loci reduces Λ by e⁻⁴(v) under polygamy and e⁻⁸ (v) under monogamy. With a linear genetic map of length R Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on s, N, U, and R only through the baseline density: Λ/R = F (Λ₀/R). Under the approximation that the interference due to different sweeps adds up, we show that Λ/R ~(Λ₀/R) / (1 +2Λ₉/R) , implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for Λ₀/R ~ 1; for higher Λ₀/R , the rate of adaptation grows above R/2, but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common-diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002740</identifier><identifier>PMID: 22685419</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Biological - genetics ; Alleles ; Biology ; Competition ; Computer Simulation ; Gene expression ; Gene Frequency ; Genetic Drift ; Genetic Linkage ; Genetics ; Genomes ; Haploidy ; Models, Genetic ; Mutation ; Numerical analysis ; Population ; Population genetics ; Recombination, Genetic - genetics ; Selection, Genetic</subject><ispartof>PLoS genetics, 2012-06, Vol.8 (6), p.e1002740-e1002740</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Weissman, Barton. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Weissman DB, Barton NH (2012) Limits to the Rate of Adaptive Substitution in Sexual Populations. PLoS Genet 8(6): e1002740. doi:10.1371/journal.pgen.1002740</rights><rights>Weissman, Barton. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-dc5d6a8230e9c78d9977cb39e6ca5a2dc2f07ac9ad48a81b68e27c676a59110a3</citedby><cites>FETCH-LOGICAL-c759t-dc5d6a8230e9c78d9977cb39e6ca5a2dc2f07ac9ad48a81b68e27c676a59110a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369949/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22685419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weissman, Daniel B</creatorcontrib><creatorcontrib>Barton, Nicholas H</creatorcontrib><title>Limits to the rate of adaptive substitution in sexual populations</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, Λ, that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is Λ₀ = 2NU , where N is the population size, U is the rate of beneficial mutations per genome, and is their mean selective advantage. Heritable variance v in log fitness due to unlinked loci reduces Λ by e⁻⁴(v) under polygamy and e⁻⁸ (v) under monogamy. With a linear genetic map of length R Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on s, N, U, and R only through the baseline density: Λ/R = F (Λ₀/R). Under the approximation that the interference due to different sweeps adds up, we show that Λ/R ~(Λ₀/R) / (1 +2Λ₉/R) , implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for Λ₀/R ~ 1; for higher Λ₀/R , the rate of adaptation grows above R/2, but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common-diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection.</description><subject>Adaptation, Biological - genetics</subject><subject>Alleles</subject><subject>Biology</subject><subject>Competition</subject><subject>Computer Simulation</subject><subject>Gene expression</subject><subject>Gene Frequency</subject><subject>Genetic Drift</subject><subject>Genetic Linkage</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Haploidy</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Numerical analysis</subject><subject>Population</subject><subject>Population genetics</subject><subject>Recombination, Genetic - genetics</subject><subject>Selection, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v3CAQhq2qVZOm_QdVa6lS1R52CwYbuFRaRf1YadVI_bqiMWAvK69xDI7Sf1-cdaJ1lUMqDsDwzDszwCTJS4yWmDD8YeeGvoVm2dWmXWKEMkbRo-QU5zlZxCV9fLQ-SZ55v0OI5Fywp8lJlhU8p1icJquN3dvg0-DSsDVpD8GkrkpBQxfslUn9UPpgwxCsa1Pbpt5cD9CkneuGBkajf548qaDx5sU0nyW_Pn_6ef51sbn4sj5fbRaK5SIstMp1ATwjyAjFuBaCMVUSYQoFOWRaZRVioARoyoHjsuAmY6pgBeQCYwTkLHl90O0a5-VUvZeYYJJTzomIxPpAaAc72fV2D_0f6cDKG4Prawl9sKoxshKmZMArIzCihVCQFRp03JXAFc951Po4RRvKvdHKtKGHZiY6P2ntVtbuShJSCEHHZN5NAr27HIwPcm-9Mk0DrXFDzBtltCgQZuwhKEKUZYRE9M0_6P0XMVE1xFptW7mYohpF5YogShDjZAy7vIeKQ5u9Va41lY32mcP7mUNkgrkONQzey_WP7__Bfns4e_F7zr49YrcGmrD1rrn5n34O0gOoeud9b6q7t8NIjg10e3NybCA5NVB0e3X87ndOtx1D_gI07BQp</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Weissman, Daniel B</creator><creator>Barton, Nicholas H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>Limits to the rate of adaptive substitution in sexual populations</title><author>Weissman, Daniel B ; Barton, Nicholas H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-dc5d6a8230e9c78d9977cb39e6ca5a2dc2f07ac9ad48a81b68e27c676a59110a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Alleles</topic><topic>Biology</topic><topic>Competition</topic><topic>Computer Simulation</topic><topic>Gene expression</topic><topic>Gene Frequency</topic><topic>Genetic Drift</topic><topic>Genetic Linkage</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Haploidy</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Numerical analysis</topic><topic>Population</topic><topic>Population genetics</topic><topic>Recombination, Genetic - genetics</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weissman, Daniel B</creatorcontrib><creatorcontrib>Barton, Nicholas H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weissman, Daniel B</au><au>Barton, Nicholas H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limits to the rate of adaptive substitution in sexual populations</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>8</volume><issue>6</issue><spage>e1002740</spage><epage>e1002740</epage><pages>e1002740-e1002740</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, Λ, that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is Λ₀ = 2NU , where N is the population size, U is the rate of beneficial mutations per genome, and is their mean selective advantage. Heritable variance v in log fitness due to unlinked loci reduces Λ by e⁻⁴(v) under polygamy and e⁻⁸ (v) under monogamy. With a linear genetic map of length R Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on s, N, U, and R only through the baseline density: Λ/R = F (Λ₀/R). Under the approximation that the interference due to different sweeps adds up, we show that Λ/R ~(Λ₀/R) / (1 +2Λ₉/R) , implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for Λ₀/R ~ 1; for higher Λ₀/R , the rate of adaptation grows above R/2, but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common-diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22685419</pmid><doi>10.1371/journal.pgen.1002740</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2012-06, Vol.8 (6), p.e1002740-e1002740 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313548839 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Adaptation, Biological - genetics Alleles Biology Competition Computer Simulation Gene expression Gene Frequency Genetic Drift Genetic Linkage Genetics Genomes Haploidy Models, Genetic Mutation Numerical analysis Population Population genetics Recombination, Genetic - genetics Selection, Genetic |
title | Limits to the rate of adaptive substitution in sexual populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limits%20to%20the%20rate%20of%20adaptive%20substitution%20in%20sexual%20populations&rft.jtitle=PLoS%20genetics&rft.au=Weissman,%20Daniel%20B&rft.date=2012-06-01&rft.volume=8&rft.issue=6&rft.spage=e1002740&rft.epage=e1002740&rft.pages=e1002740-e1002740&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002740&rft_dat=%3Cgale_plos_%3EA304307837%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313548839&rft_id=info:pmid/22685419&rft_galeid=A304307837&rft_doaj_id=oai_doaj_org_article_f9eb7a8fe910469ca26dade91ba8c858&rfr_iscdi=true |