Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3
The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2009-09, Vol.5 (9), p.e1000629-e1000629 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000629 |
---|---|
container_issue | 9 |
container_start_page | e1000629 |
container_title | PLoS genetics |
container_volume | 5 |
creator | Fernius, Josefin Marston, Adele L |
description | The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3. |
doi_str_mv | 10.1371/journal.pgen.1000629 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313544181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A217362546</galeid><doaj_id>oai_doaj_org_article_692d4e2ee46b4f6da75ce37901987417</doaj_id><sourcerecordid>A217362546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLwoLgjEmbj_ZGGMZVBxYX_NjbkKan0-ymTTdJdffeH27mQ52CF0ouEs553jfJSU6SPMVojnOOX1_Z0fXSzIc19HOMEGJZeS85xpTmM04QuX-wPkoeeX-FUE6Lkj9MjnDJc8QKepz8OPNBVkb7toM-pLZJlW3Ba9unMqShhXQAp1XMOduBg7S620aXocFleq17CFa1Nib8WCnbDQZuU9nXW8jBYLSSYePWWHc9k95bpWWAOm2kCta9Spe-yx8nDxppPDzZzyfJ13dnX5YfZucX71fLxflMFQiFWUUYqqDGXGZKAm4KVjUKI4ZqRYATxYqSSpIXQDlmqmJlk9EIQ6wWZlzK_CR5vvMdjPViX0AvcI5zSggucCRWO6K28koMTnfS3QkrtdgGrFsL6YJWBgQrs5pABkBYRRpWS05V3KpEuCw4wTx6zXZe_jsMYzVxe6svF1s3o0eBKcJZFvk3-9ONVQf1tubSTGTTTK9bsbbfRMYzXtIiGpzuDZy9GcEH0WmvwBjZgx29YJzlnLLNTi924FrGi-i-sdFPbWCxyOLJWUYJi9T8L1QcNXRa2R4aHeMTwcuJIDIBbsNajt6L1edP_8F-_Hf24nLKnh6wLUgTWm_NuPmDfgqSHaic9d5B87vQGIlNg_36H2LTYGLfYFH27PCR_oj2HZX_BHMlIaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67637562</pqid></control><display><type>article</type><title>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</title><source>MEDLINE</source><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Fernius, Josefin ; Marston, Adele L</creator><contributor>Lichten, Michael</contributor><creatorcontrib>Fernius, Josefin ; Marston, Adele L ; Lichten, Michael</creatorcontrib><description>The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000629</identifier><identifier>PMID: 19730685</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding sites ; Cell Biology/Cell Growth and Division ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell division ; Centromere - genetics ; Centromere - metabolism ; Centromeres ; Chromosomes ; Chromosomes, Fungal - metabolism ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Deoxyribonucleic acid ; Developmental Biology/Cell Differentiation ; Developmental Biology/Germ Cells ; DNA ; DNA Replication ; Experiments ; Flow cytometry ; Genomes ; Kinetochores ; Kinetochores - metabolism ; Mitosis ; Molecular Biology/Centromeres ; Molecular Biology/Chromosome Structure ; Physiological aspects ; Proteins ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription factors</subject><ispartof>PLoS genetics, 2009-09, Vol.5 (9), p.e1000629-e1000629</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Fernius, Marston. 2009</rights><rights>2009 Fernius, Marston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Fernius J, Marston AL (2009) Establishment of Cohesion at the Pericentromere by the Ctf19 Kinetochore Subcomplex and the Replication Fork-Associated Factor, Csm3. PLoS Genet 5(9): e1000629. doi:10.1371/journal.pgen.1000629</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</citedby><cites>FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19730685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150122$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Lichten, Michael</contributor><creatorcontrib>Fernius, Josefin</creatorcontrib><creatorcontrib>Marston, Adele L</creatorcontrib><title>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.</description><subject>Binding sites</subject><subject>Cell Biology/Cell Growth and Division</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Centromere - genetics</subject><subject>Centromere - metabolism</subject><subject>Centromeres</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Germ Cells</subject><subject>DNA</subject><subject>DNA Replication</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Genomes</subject><subject>Kinetochores</subject><subject>Kinetochores - metabolism</subject><subject>Mitosis</subject><subject>Molecular Biology/Centromeres</subject><subject>Molecular Biology/Chromosome Structure</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription factors</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLwoLgjEmbj_ZGGMZVBxYX_NjbkKan0-ymTTdJdffeH27mQ52CF0ouEs553jfJSU6SPMVojnOOX1_Z0fXSzIc19HOMEGJZeS85xpTmM04QuX-wPkoeeX-FUE6Lkj9MjnDJc8QKepz8OPNBVkb7toM-pLZJlW3Ba9unMqShhXQAp1XMOduBg7S620aXocFleq17CFa1Nib8WCnbDQZuU9nXW8jBYLSSYePWWHc9k95bpWWAOm2kCta9Spe-yx8nDxppPDzZzyfJ13dnX5YfZucX71fLxflMFQiFWUUYqqDGXGZKAm4KVjUKI4ZqRYATxYqSSpIXQDlmqmJlk9EIQ6wWZlzK_CR5vvMdjPViX0AvcI5zSggucCRWO6K28koMTnfS3QkrtdgGrFsL6YJWBgQrs5pABkBYRRpWS05V3KpEuCw4wTx6zXZe_jsMYzVxe6svF1s3o0eBKcJZFvk3-9ONVQf1tubSTGTTTK9bsbbfRMYzXtIiGpzuDZy9GcEH0WmvwBjZgx29YJzlnLLNTi924FrGi-i-sdFPbWCxyOLJWUYJi9T8L1QcNXRa2R4aHeMTwcuJIDIBbsNajt6L1edP_8F-_Hf24nLKnh6wLUgTWm_NuPmDfgqSHaic9d5B87vQGIlNg_36H2LTYGLfYFH27PCR_oj2HZX_BHMlIaU</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Fernius, Josefin</creator><creator>Marston, Adele L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DOA</scope></search><sort><creationdate>20090901</creationdate><title>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</title><author>Fernius, Josefin ; Marston, Adele L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Binding sites</topic><topic>Cell Biology/Cell Growth and Division</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Centromere - genetics</topic><topic>Centromere - metabolism</topic><topic>Centromeres</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Germ Cells</topic><topic>DNA</topic><topic>DNA Replication</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Genomes</topic><topic>Kinetochores</topic><topic>Kinetochores - metabolism</topic><topic>Mitosis</topic><topic>Molecular Biology/Centromeres</topic><topic>Molecular Biology/Chromosome Structure</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernius, Josefin</creatorcontrib><creatorcontrib>Marston, Adele L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernius, Josefin</au><au>Marston, Adele L</au><au>Lichten, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>5</volume><issue>9</issue><spage>e1000629</spage><epage>e1000629</epage><pages>e1000629-e1000629</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19730685</pmid><doi>10.1371/journal.pgen.1000629</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2009-09, Vol.5 (9), p.e1000629-e1000629 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313544181 |
source | MEDLINE; TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Binding sites Cell Biology/Cell Growth and Division Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell division Centromere - genetics Centromere - metabolism Centromeres Chromosomes Chromosomes, Fungal - metabolism Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Deoxyribonucleic acid Developmental Biology/Cell Differentiation Developmental Biology/Germ Cells DNA DNA Replication Experiments Flow cytometry Genomes Kinetochores Kinetochores - metabolism Mitosis Molecular Biology/Centromeres Molecular Biology/Chromosome Structure Physiological aspects Proteins Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription factors |
title | Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20of%20cohesion%20at%20the%20pericentromere%20by%20the%20Ctf19%20kinetochore%20subcomplex%20and%20the%20replication%20fork-associated%20factor,%20Csm3&rft.jtitle=PLoS%20genetics&rft.au=Fernius,%20Josefin&rft.date=2009-09-01&rft.volume=5&rft.issue=9&rft.spage=e1000629&rft.epage=e1000629&rft.pages=e1000629-e1000629&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000629&rft_dat=%3Cgale_plos_%3EA217362546%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67637562&rft_id=info:pmid/19730685&rft_galeid=A217362546&rft_doaj_id=oai_doaj_org_article_692d4e2ee46b4f6da75ce37901987417&rfr_iscdi=true |