Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3

The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2009-09, Vol.5 (9), p.e1000629-e1000629
Hauptverfasser: Fernius, Josefin, Marston, Adele L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000629
container_issue 9
container_start_page e1000629
container_title PLoS genetics
container_volume 5
creator Fernius, Josefin
Marston, Adele L
description The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.
doi_str_mv 10.1371/journal.pgen.1000629
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313544181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A217362546</galeid><doaj_id>oai_doaj_org_article_692d4e2ee46b4f6da75ce37901987417</doaj_id><sourcerecordid>A217362546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLwoLgjEmbj_ZGGMZVBxYX_NjbkKan0-ymTTdJdffeH27mQ52CF0ouEs553jfJSU6SPMVojnOOX1_Z0fXSzIc19HOMEGJZeS85xpTmM04QuX-wPkoeeX-FUE6Lkj9MjnDJc8QKepz8OPNBVkb7toM-pLZJlW3Ba9unMqShhXQAp1XMOduBg7S620aXocFleq17CFa1Nib8WCnbDQZuU9nXW8jBYLSSYePWWHc9k95bpWWAOm2kCta9Spe-yx8nDxppPDzZzyfJ13dnX5YfZucX71fLxflMFQiFWUUYqqDGXGZKAm4KVjUKI4ZqRYATxYqSSpIXQDlmqmJlk9EIQ6wWZlzK_CR5vvMdjPViX0AvcI5zSggucCRWO6K28koMTnfS3QkrtdgGrFsL6YJWBgQrs5pABkBYRRpWS05V3KpEuCw4wTx6zXZe_jsMYzVxe6svF1s3o0eBKcJZFvk3-9ONVQf1tubSTGTTTK9bsbbfRMYzXtIiGpzuDZy9GcEH0WmvwBjZgx29YJzlnLLNTi924FrGi-i-sdFPbWCxyOLJWUYJi9T8L1QcNXRa2R4aHeMTwcuJIDIBbsNajt6L1edP_8F-_Hf24nLKnh6wLUgTWm_NuPmDfgqSHaic9d5B87vQGIlNg_36H2LTYGLfYFH27PCR_oj2HZX_BHMlIaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67637562</pqid></control><display><type>article</type><title>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</title><source>MEDLINE</source><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Fernius, Josefin ; Marston, Adele L</creator><contributor>Lichten, Michael</contributor><creatorcontrib>Fernius, Josefin ; Marston, Adele L ; Lichten, Michael</creatorcontrib><description>The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000629</identifier><identifier>PMID: 19730685</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding sites ; Cell Biology/Cell Growth and Division ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell division ; Centromere - genetics ; Centromere - metabolism ; Centromeres ; Chromosomes ; Chromosomes, Fungal - metabolism ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Deoxyribonucleic acid ; Developmental Biology/Cell Differentiation ; Developmental Biology/Germ Cells ; DNA ; DNA Replication ; Experiments ; Flow cytometry ; Genomes ; Kinetochores ; Kinetochores - metabolism ; Mitosis ; Molecular Biology/Centromeres ; Molecular Biology/Chromosome Structure ; Physiological aspects ; Proteins ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription factors</subject><ispartof>PLoS genetics, 2009-09, Vol.5 (9), p.e1000629-e1000629</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Fernius, Marston. 2009</rights><rights>2009 Fernius, Marston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Fernius J, Marston AL (2009) Establishment of Cohesion at the Pericentromere by the Ctf19 Kinetochore Subcomplex and the Replication Fork-Associated Factor, Csm3. PLoS Genet 5(9): e1000629. doi:10.1371/journal.pgen.1000629</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</citedby><cites>FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19730685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150122$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Lichten, Michael</contributor><creatorcontrib>Fernius, Josefin</creatorcontrib><creatorcontrib>Marston, Adele L</creatorcontrib><title>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.</description><subject>Binding sites</subject><subject>Cell Biology/Cell Growth and Division</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Centromere - genetics</subject><subject>Centromere - metabolism</subject><subject>Centromeres</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Germ Cells</subject><subject>DNA</subject><subject>DNA Replication</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Genomes</subject><subject>Kinetochores</subject><subject>Kinetochores - metabolism</subject><subject>Mitosis</subject><subject>Molecular Biology/Centromeres</subject><subject>Molecular Biology/Chromosome Structure</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription factors</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLwoLgjEmbj_ZGGMZVBxYX_NjbkKan0-ymTTdJdffeH27mQ52CF0ouEs553jfJSU6SPMVojnOOX1_Z0fXSzIc19HOMEGJZeS85xpTmM04QuX-wPkoeeX-FUE6Lkj9MjnDJc8QKepz8OPNBVkb7toM-pLZJlW3Ba9unMqShhXQAp1XMOduBg7S620aXocFleq17CFa1Nib8WCnbDQZuU9nXW8jBYLSSYePWWHc9k95bpWWAOm2kCta9Spe-yx8nDxppPDzZzyfJ13dnX5YfZucX71fLxflMFQiFWUUYqqDGXGZKAm4KVjUKI4ZqRYATxYqSSpIXQDlmqmJlk9EIQ6wWZlzK_CR5vvMdjPViX0AvcI5zSggucCRWO6K28koMTnfS3QkrtdgGrFsL6YJWBgQrs5pABkBYRRpWS05V3KpEuCw4wTx6zXZe_jsMYzVxe6svF1s3o0eBKcJZFvk3-9ONVQf1tubSTGTTTK9bsbbfRMYzXtIiGpzuDZy9GcEH0WmvwBjZgx29YJzlnLLNTi924FrGi-i-sdFPbWCxyOLJWUYJi9T8L1QcNXRa2R4aHeMTwcuJIDIBbsNajt6L1edP_8F-_Hf24nLKnh6wLUgTWm_NuPmDfgqSHaic9d5B87vQGIlNg_36H2LTYGLfYFH27PCR_oj2HZX_BHMlIaU</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Fernius, Josefin</creator><creator>Marston, Adele L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DOA</scope></search><sort><creationdate>20090901</creationdate><title>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</title><author>Fernius, Josefin ; Marston, Adele L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c800t-b460bed17a2cae1f86bfc1060dc4e74c6895a438e5716cb69f2517ae371167aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Binding sites</topic><topic>Cell Biology/Cell Growth and Division</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Centromere - genetics</topic><topic>Centromere - metabolism</topic><topic>Centromeres</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Germ Cells</topic><topic>DNA</topic><topic>DNA Replication</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Genomes</topic><topic>Kinetochores</topic><topic>Kinetochores - metabolism</topic><topic>Mitosis</topic><topic>Molecular Biology/Centromeres</topic><topic>Molecular Biology/Chromosome Structure</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernius, Josefin</creatorcontrib><creatorcontrib>Marston, Adele L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernius, Josefin</au><au>Marston, Adele L</au><au>Lichten, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>5</volume><issue>9</issue><spage>e1000629</spage><epage>e1000629</epage><pages>e1000629-e1000629</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19730685</pmid><doi>10.1371/journal.pgen.1000629</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2009-09, Vol.5 (9), p.e1000629-e1000629
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313544181
source MEDLINE; TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Binding sites
Cell Biology/Cell Growth and Division
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell division
Centromere - genetics
Centromere - metabolism
Centromeres
Chromosomes
Chromosomes, Fungal - metabolism
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Deoxyribonucleic acid
Developmental Biology/Cell Differentiation
Developmental Biology/Germ Cells
DNA
DNA Replication
Experiments
Flow cytometry
Genomes
Kinetochores
Kinetochores - metabolism
Mitosis
Molecular Biology/Centromeres
Molecular Biology/Chromosome Structure
Physiological aspects
Proteins
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription factors
title Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20of%20cohesion%20at%20the%20pericentromere%20by%20the%20Ctf19%20kinetochore%20subcomplex%20and%20the%20replication%20fork-associated%20factor,%20Csm3&rft.jtitle=PLoS%20genetics&rft.au=Fernius,%20Josefin&rft.date=2009-09-01&rft.volume=5&rft.issue=9&rft.spage=e1000629&rft.epage=e1000629&rft.pages=e1000629-e1000629&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000629&rft_dat=%3Cgale_plos_%3EA217362546%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67637562&rft_id=info:pmid/19730685&rft_galeid=A217362546&rft_doaj_id=oai_doaj_org_article_692d4e2ee46b4f6da75ce37901987417&rfr_iscdi=true