Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry
The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae,...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2012-03, Vol.8 (3), p.e1002562 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1002562 |
container_title | PLoS genetics |
container_volume | 8 |
creator | Diezmann, Stephanie Michaut, Magali Shapiro, Rebecca S Bader, Gary D Cowen, Leah E |
description | The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time. |
doi_str_mv | 10.1371/journal.pgen.1002562 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313541245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A287390770</galeid><doaj_id>oai_doaj_org_article_6733df9ed3dc4259b6be3e238bc695c5</doaj_id><sourcerecordid>A287390770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QDguDFjPlom_ZmYRnUHVhd8Os2pMlpJ2MnGZN21vn3pjvdZQoKSi9aTp_3zeE9OUnynOA5YZy8XbveW9nOtw3YOcGYZjl9kJySLGMznuL04dH3SfIkhDXGLCtK_jg5oTRlRUH4abL_KLdbYxvUrQBdhm2JUfSDzihkbAdeqs44i2LlxvkfsYYW0mqjJZJtZZS0AXnYgWwDArsz3tkN2E62SDnbRV-wao-iIlI3xoNGynjVm87vnyaP6iiDZ-P7LPn2_t3XxeXs6vrDcnFxNVO8JN2MplDUFEDxvFBQsorXstCQprrQlSKFxLXWFcEUDwhTEkiKc17WUqWS5pidJS8PvtvWBTGmFgRhhGUpoWkWieWB0E6uxdabjfR74aQRtwXnGyF9TKQFkXPGdF2CZlqlNCurvAIGlBWVystMDV7n42l9tQGtYhhethPT6R9rVqJxO8EYzthtu69GA-9-9hC6v7Q8Uo2MXRlbu2imNiYocUELzkrM-eA1_wMVHw0bEwcEtYn1ieDNRDAMEX51jexDEMsvn_-D_fTv7PX3Kfv6iF3Fq9Wtgmv74R6GKZgeQOVdCB7q-5QJFsOK3CUnhhUR44pE2YvjCd2L7naC_QavRg4T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313541245</pqid></control><display><type>article</type><title>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</title><source>PubMed (Medline)</source><source>PLoS</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>EZB*</source><creator>Diezmann, Stephanie ; Michaut, Magali ; Shapiro, Rebecca S ; Bader, Gary D ; Cowen, Leah E</creator><creatorcontrib>Diezmann, Stephanie ; Michaut, Magali ; Shapiro, Rebecca S ; Bader, Gary D ; Cowen, Leah E</creatorcontrib><description>The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002562</identifier><identifier>PMID: 22438817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - metabolism ; Bacterial genetics ; Benzoquinones - pharmacology ; Biology ; Candida albicans ; Candida albicans - genetics ; Candida albicans - growth & development ; Candida albicans - metabolism ; Culture Media ; Environmental aspects ; Environmental Microbiology ; Fungi ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks - drug effects ; Gene Regulatory Networks - genetics ; Genes ; Genetic aspects ; Genetics ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Kinases ; Lactams, Macrocyclic - pharmacology ; Medical research ; Microbial colonies ; Phosphotransferases - metabolism ; Physiological aspects ; Protein Interaction Maps - drug effects ; Protein Interaction Maps - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Stress, Physiological - genetics ; Yeast</subject><ispartof>PLoS genetics, 2012-03, Vol.8 (3), p.e1002562</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Diezmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Diezmann S, Michaut M, Shapiro RS, Bader GD, Cowen LE (2012) Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry. PLoS Genet 8(3): e1002562. doi:10.1371/journal.pgen.1002562</rights><rights>Diezmann et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</citedby><cites>FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305360/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305360/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22438817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diezmann, Stephanie</creatorcontrib><creatorcontrib>Michaut, Magali</creatorcontrib><creatorcontrib>Shapiro, Rebecca S</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Cowen, Leah E</creatorcontrib><title>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacterial genetics</subject><subject>Benzoquinones - pharmacology</subject><subject>Biology</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - growth & development</subject><subject>Candida albicans - metabolism</subject><subject>Culture Media</subject><subject>Environmental aspects</subject><subject>Environmental Microbiology</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks - drug effects</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Kinases</subject><subject>Lactams, Macrocyclic - pharmacology</subject><subject>Medical research</subject><subject>Microbial colonies</subject><subject>Phosphotransferases - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Interaction Maps - drug effects</subject><subject>Protein Interaction Maps - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Stress, Physiological - genetics</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QDguDFjPlom_ZmYRnUHVhd8Os2pMlpJ2MnGZN21vn3pjvdZQoKSi9aTp_3zeE9OUnynOA5YZy8XbveW9nOtw3YOcGYZjl9kJySLGMznuL04dH3SfIkhDXGLCtK_jg5oTRlRUH4abL_KLdbYxvUrQBdhm2JUfSDzihkbAdeqs44i2LlxvkfsYYW0mqjJZJtZZS0AXnYgWwDArsz3tkN2E62SDnbRV-wao-iIlI3xoNGynjVm87vnyaP6iiDZ-P7LPn2_t3XxeXs6vrDcnFxNVO8JN2MplDUFEDxvFBQsorXstCQprrQlSKFxLXWFcEUDwhTEkiKc17WUqWS5pidJS8PvtvWBTGmFgRhhGUpoWkWieWB0E6uxdabjfR74aQRtwXnGyF9TKQFkXPGdF2CZlqlNCurvAIGlBWVystMDV7n42l9tQGtYhhethPT6R9rVqJxO8EYzthtu69GA-9-9hC6v7Q8Uo2MXRlbu2imNiYocUELzkrM-eA1_wMVHw0bEwcEtYn1ieDNRDAMEX51jexDEMsvn_-D_fTv7PX3Kfv6iF3Fq9Wtgmv74R6GKZgeQOVdCB7q-5QJFsOK3CUnhhUR44pE2YvjCd2L7naC_QavRg4T</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Diezmann, Stephanie</creator><creator>Michaut, Magali</creator><creator>Shapiro, Rebecca S</creator><creator>Bader, Gary D</creator><creator>Cowen, Leah E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120301</creationdate><title>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</title><author>Diezmann, Stephanie ; Michaut, Magali ; Shapiro, Rebecca S ; Bader, Gary D ; Cowen, Leah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacterial genetics</topic><topic>Benzoquinones - pharmacology</topic><topic>Biology</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - growth & development</topic><topic>Candida albicans - metabolism</topic><topic>Culture Media</topic><topic>Environmental aspects</topic><topic>Environmental Microbiology</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks - drug effects</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Kinases</topic><topic>Lactams, Macrocyclic - pharmacology</topic><topic>Medical research</topic><topic>Microbial colonies</topic><topic>Phosphotransferases - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Interaction Maps - drug effects</topic><topic>Protein Interaction Maps - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Stress, Physiological - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diezmann, Stephanie</creatorcontrib><creatorcontrib>Michaut, Magali</creatorcontrib><creatorcontrib>Shapiro, Rebecca S</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Cowen, Leah E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diezmann, Stephanie</au><au>Michaut, Magali</au><au>Shapiro, Rebecca S</au><au>Bader, Gary D</au><au>Cowen, Leah E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>8</volume><issue>3</issue><spage>e1002562</spage><pages>e1002562-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22438817</pmid><doi>10.1371/journal.pgen.1002562</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2012-03, Vol.8 (3), p.e1002562 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313541245 |
source | PubMed (Medline); PLoS; MEDLINE; Directory of Open Access Journals; EZB* |
subjects | Adenosine Triphosphate - metabolism Bacterial genetics Benzoquinones - pharmacology Biology Candida albicans Candida albicans - genetics Candida albicans - growth & development Candida albicans - metabolism Culture Media Environmental aspects Environmental Microbiology Fungi Gene Expression Regulation, Bacterial Gene Regulatory Networks - drug effects Gene Regulatory Networks - genetics Genes Genetic aspects Genetics HSP90 Heat-Shock Proteins - genetics HSP90 Heat-Shock Proteins - metabolism Kinases Lactams, Macrocyclic - pharmacology Medical research Microbial colonies Phosphotransferases - metabolism Physiological aspects Protein Interaction Maps - drug effects Protein Interaction Maps - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Signal Transduction - drug effects Signal Transduction - genetics Stress, Physiological - genetics Yeast |
title | Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Hsp90%20genetic%20interaction%20network%20in%20Candida%20albicans%20reveals%20environmental%20contingency%20and%20rewired%20circuitry&rft.jtitle=PLoS%20genetics&rft.au=Diezmann,%20Stephanie&rft.date=2012-03-01&rft.volume=8&rft.issue=3&rft.spage=e1002562&rft.pages=e1002562-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002562&rft_dat=%3Cgale_plos_%3EA287390770%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313541245&rft_id=info:pmid/22438817&rft_galeid=A287390770&rft_doaj_id=oai_doaj_org_article_6733df9ed3dc4259b6be3e238bc695c5&rfr_iscdi=true |