Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry

The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2012-03, Vol.8 (3), p.e1002562
Hauptverfasser: Diezmann, Stephanie, Michaut, Magali, Shapiro, Rebecca S, Bader, Gary D, Cowen, Leah E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e1002562
container_title PLoS genetics
container_volume 8
creator Diezmann, Stephanie
Michaut, Magali
Shapiro, Rebecca S
Bader, Gary D
Cowen, Leah E
description The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.
doi_str_mv 10.1371/journal.pgen.1002562
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313541245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A287390770</galeid><doaj_id>oai_doaj_org_article_6733df9ed3dc4259b6be3e238bc695c5</doaj_id><sourcerecordid>A287390770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QDguDFjPlom_ZmYRnUHVhd8Os2pMlpJ2MnGZN21vn3pjvdZQoKSi9aTp_3zeE9OUnynOA5YZy8XbveW9nOtw3YOcGYZjl9kJySLGMznuL04dH3SfIkhDXGLCtK_jg5oTRlRUH4abL_KLdbYxvUrQBdhm2JUfSDzihkbAdeqs44i2LlxvkfsYYW0mqjJZJtZZS0AXnYgWwDArsz3tkN2E62SDnbRV-wao-iIlI3xoNGynjVm87vnyaP6iiDZ-P7LPn2_t3XxeXs6vrDcnFxNVO8JN2MplDUFEDxvFBQsorXstCQprrQlSKFxLXWFcEUDwhTEkiKc17WUqWS5pidJS8PvtvWBTGmFgRhhGUpoWkWieWB0E6uxdabjfR74aQRtwXnGyF9TKQFkXPGdF2CZlqlNCurvAIGlBWVystMDV7n42l9tQGtYhhethPT6R9rVqJxO8EYzthtu69GA-9-9hC6v7Q8Uo2MXRlbu2imNiYocUELzkrM-eA1_wMVHw0bEwcEtYn1ieDNRDAMEX51jexDEMsvn_-D_fTv7PX3Kfv6iF3Fq9Wtgmv74R6GKZgeQOVdCB7q-5QJFsOK3CUnhhUR44pE2YvjCd2L7naC_QavRg4T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313541245</pqid></control><display><type>article</type><title>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</title><source>PubMed (Medline)</source><source>PLoS</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>EZB*</source><creator>Diezmann, Stephanie ; Michaut, Magali ; Shapiro, Rebecca S ; Bader, Gary D ; Cowen, Leah E</creator><creatorcontrib>Diezmann, Stephanie ; Michaut, Magali ; Shapiro, Rebecca S ; Bader, Gary D ; Cowen, Leah E</creatorcontrib><description>The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002562</identifier><identifier>PMID: 22438817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - metabolism ; Bacterial genetics ; Benzoquinones - pharmacology ; Biology ; Candida albicans ; Candida albicans - genetics ; Candida albicans - growth &amp; development ; Candida albicans - metabolism ; Culture Media ; Environmental aspects ; Environmental Microbiology ; Fungi ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks - drug effects ; Gene Regulatory Networks - genetics ; Genes ; Genetic aspects ; Genetics ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Kinases ; Lactams, Macrocyclic - pharmacology ; Medical research ; Microbial colonies ; Phosphotransferases - metabolism ; Physiological aspects ; Protein Interaction Maps - drug effects ; Protein Interaction Maps - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Stress, Physiological - genetics ; Yeast</subject><ispartof>PLoS genetics, 2012-03, Vol.8 (3), p.e1002562</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Diezmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Diezmann S, Michaut M, Shapiro RS, Bader GD, Cowen LE (2012) Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry. PLoS Genet 8(3): e1002562. doi:10.1371/journal.pgen.1002562</rights><rights>Diezmann et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</citedby><cites>FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305360/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305360/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22438817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diezmann, Stephanie</creatorcontrib><creatorcontrib>Michaut, Magali</creatorcontrib><creatorcontrib>Shapiro, Rebecca S</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Cowen, Leah E</creatorcontrib><title>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacterial genetics</subject><subject>Benzoquinones - pharmacology</subject><subject>Biology</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - growth &amp; development</subject><subject>Candida albicans - metabolism</subject><subject>Culture Media</subject><subject>Environmental aspects</subject><subject>Environmental Microbiology</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks - drug effects</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Kinases</subject><subject>Lactams, Macrocyclic - pharmacology</subject><subject>Medical research</subject><subject>Microbial colonies</subject><subject>Phosphotransferases - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Interaction Maps - drug effects</subject><subject>Protein Interaction Maps - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Stress, Physiological - genetics</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QDguDFjPlom_ZmYRnUHVhd8Os2pMlpJ2MnGZN21vn3pjvdZQoKSi9aTp_3zeE9OUnynOA5YZy8XbveW9nOtw3YOcGYZjl9kJySLGMznuL04dH3SfIkhDXGLCtK_jg5oTRlRUH4abL_KLdbYxvUrQBdhm2JUfSDzihkbAdeqs44i2LlxvkfsYYW0mqjJZJtZZS0AXnYgWwDArsz3tkN2E62SDnbRV-wao-iIlI3xoNGynjVm87vnyaP6iiDZ-P7LPn2_t3XxeXs6vrDcnFxNVO8JN2MplDUFEDxvFBQsorXstCQprrQlSKFxLXWFcEUDwhTEkiKc17WUqWS5pidJS8PvtvWBTGmFgRhhGUpoWkWieWB0E6uxdabjfR74aQRtwXnGyF9TKQFkXPGdF2CZlqlNCurvAIGlBWVystMDV7n42l9tQGtYhhethPT6R9rVqJxO8EYzthtu69GA-9-9hC6v7Q8Uo2MXRlbu2imNiYocUELzkrM-eA1_wMVHw0bEwcEtYn1ieDNRDAMEX51jexDEMsvn_-D_fTv7PX3Kfv6iF3Fq9Wtgmv74R6GKZgeQOVdCB7q-5QJFsOK3CUnhhUR44pE2YvjCd2L7naC_QavRg4T</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Diezmann, Stephanie</creator><creator>Michaut, Magali</creator><creator>Shapiro, Rebecca S</creator><creator>Bader, Gary D</creator><creator>Cowen, Leah E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120301</creationdate><title>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</title><author>Diezmann, Stephanie ; Michaut, Magali ; Shapiro, Rebecca S ; Bader, Gary D ; Cowen, Leah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-24e8f2eec768ce93b7fa8de44d8dbc18a0fddb1020ec763cae140679fac4a2603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacterial genetics</topic><topic>Benzoquinones - pharmacology</topic><topic>Biology</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - growth &amp; development</topic><topic>Candida albicans - metabolism</topic><topic>Culture Media</topic><topic>Environmental aspects</topic><topic>Environmental Microbiology</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks - drug effects</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Kinases</topic><topic>Lactams, Macrocyclic - pharmacology</topic><topic>Medical research</topic><topic>Microbial colonies</topic><topic>Phosphotransferases - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Interaction Maps - drug effects</topic><topic>Protein Interaction Maps - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Stress, Physiological - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diezmann, Stephanie</creatorcontrib><creatorcontrib>Michaut, Magali</creatorcontrib><creatorcontrib>Shapiro, Rebecca S</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Cowen, Leah E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diezmann, Stephanie</au><au>Michaut, Magali</au><au>Shapiro, Rebecca S</au><au>Bader, Gary D</au><au>Cowen, Leah E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>8</volume><issue>3</issue><spage>e1002562</spage><pages>e1002562-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22438817</pmid><doi>10.1371/journal.pgen.1002562</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2012-03, Vol.8 (3), p.e1002562
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313541245
source PubMed (Medline); PLoS; MEDLINE; Directory of Open Access Journals; EZB*
subjects Adenosine Triphosphate - metabolism
Bacterial genetics
Benzoquinones - pharmacology
Biology
Candida albicans
Candida albicans - genetics
Candida albicans - growth & development
Candida albicans - metabolism
Culture Media
Environmental aspects
Environmental Microbiology
Fungi
Gene Expression Regulation, Bacterial
Gene Regulatory Networks - drug effects
Gene Regulatory Networks - genetics
Genes
Genetic aspects
Genetics
HSP90 Heat-Shock Proteins - genetics
HSP90 Heat-Shock Proteins - metabolism
Kinases
Lactams, Macrocyclic - pharmacology
Medical research
Microbial colonies
Phosphotransferases - metabolism
Physiological aspects
Protein Interaction Maps - drug effects
Protein Interaction Maps - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Signal Transduction - drug effects
Signal Transduction - genetics
Stress, Physiological - genetics
Yeast
title Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Hsp90%20genetic%20interaction%20network%20in%20Candida%20albicans%20reveals%20environmental%20contingency%20and%20rewired%20circuitry&rft.jtitle=PLoS%20genetics&rft.au=Diezmann,%20Stephanie&rft.date=2012-03-01&rft.volume=8&rft.issue=3&rft.spage=e1002562&rft.pages=e1002562-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002562&rft_dat=%3Cgale_plos_%3EA287390770%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313541245&rft_id=info:pmid/22438817&rft_galeid=A287390770&rft_doaj_id=oai_doaj_org_article_6733df9ed3dc4259b6be3e238bc695c5&rfr_iscdi=true