Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologou...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2012-04, Vol.8 (4), p.e1002636-e1002636 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002636 |
---|---|
container_issue | 4 |
container_start_page | e1002636 |
container_title | PLoS genetics |
container_volume | 8 |
creator | Da Ines, Olivier Abe, Kiyomi Goubely, Chantal Gallego, Maria Eugenia White, Charles I |
description | During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains. |
doi_str_mv | 10.1371/journal.pgen.1002636 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313538157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A289431540</galeid><doaj_id>oai_doaj_org_article_d1f45ac02fa2412b999310d1df8e4292</doaj_id><sourcerecordid>A289431540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c829t-27718298f26ecbb33fc1fe861e3546618379cb79a64e44bf17df2dc63e92c5953</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwDxBEQkIg0eLPJL5BqjpgkwqTxset5TjHrafE7uxkwL_HbbNpnXYB8kXs4-d9nXOOTpY9x2iKaYnfX_ghONVO10twU4wQKWjxIDvEnNNJyRB7eGt_kD2J8QIhyitRPs4OCOGUVIgdZr-OrTEQrFvmAS4HG6AD18fc-JCfz445zpVr8uMvc5xbl3dgfW91vlZ2K_Em1wkPvoMAcYvqVTr5mCK5Cl3cqGZB1bbx62hj3q9Ua5VTT7NHRrURno3fo-zHp4_f5yeTxdnn0_lsMdEVEf2ElCVOm8qQAnRdU2o0NlAVGChnRYErWgpdl0IVDBirDS4bQxpdUBBEc8HpUfZy57tufZRjzaLEFFNOK8zLRJzuiMarC7kOtlPhj_TKym3Ah6VUISXdgmywYVxpRIwiDJNaCEExanBjKmBEkOT1YXxtqDtotrVR7Z7p_o2zK7n0V5JSijDaGLzbGazuyE5mC2ldhNBJhAVKTSVXOOFvxveCvxwg9rKzUUPbKgd-SGkiJCpEEacJfXUHvb8YI7VUKV_rjE-_qTemckYqwSjmDCVqeg-VVgOd1d6BsSm-J3i7J0hMD7_7pRpilKffzv-D_frv7NnPffb1LXYFqu1X0bdDb72L-yDbgTr4GAOYm0ZgJDejd105uRk9OY5ekr243fsb0fWs0b-AiCY3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313538157</pqid></control><display><type>article</type><title>Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Da Ines, Olivier ; Abe, Kiyomi ; Goubely, Chantal ; Gallego, Maria Eugenia ; White, Charles I</creator><contributor>Pawlowski, Wojciech P.</contributor><creatorcontrib>Da Ines, Olivier ; Abe, Kiyomi ; Goubely, Chantal ; Gallego, Maria Eugenia ; White, Charles I ; Pawlowski, Wojciech P.</creatorcontrib><description>During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002636</identifier><identifier>PMID: 22532804</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis thaliana ; Biology ; Cell Cycle Proteins - genetics ; Cell division ; Centromere - genetics ; Chromosome Pairing - genetics ; Chromosome Segregation ; Chromosomes ; Chromosomes - genetics ; DNA Fragmentation ; Euchromatin - genetics ; Genes ; Genetic aspects ; Genetics ; Genomics ; Heterochromatin ; Life Sciences ; Meiosis - genetics ; Mutant Proteins - genetics ; Physiological aspects ; Plant genetics ; Plant Infertility ; Proteins ; Rad51 Recombinase - genetics ; Rec A Recombinases - genetics ; Recombination, Genetic - genetics</subject><ispartof>PLoS genetics, 2012-04, Vol.8 (4), p.e1002636-e1002636</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Da Ines et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Da Ines O, Abe K, Goubely C, Gallego ME, White CI (2012) Differing Requirements for RAD51 and DMC1 in Meiotic Pairing of Centromeres and Chromosome Arms in Arabidopsis thaliana. PLoS Genet 8(4): e1002636. doi:10.1371/journal.pgen.1002636</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Da Ines et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c829t-27718298f26ecbb33fc1fe861e3546618379cb79a64e44bf17df2dc63e92c5953</citedby><cites>FETCH-LOGICAL-c829t-27718298f26ecbb33fc1fe861e3546618379cb79a64e44bf17df2dc63e92c5953</cites><orcidid>0000-0001-8152-5797 ; 0000-0002-1868-3781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22532804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-01907402$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Pawlowski, Wojciech P.</contributor><creatorcontrib>Da Ines, Olivier</creatorcontrib><creatorcontrib>Abe, Kiyomi</creatorcontrib><creatorcontrib>Goubely, Chantal</creatorcontrib><creatorcontrib>Gallego, Maria Eugenia</creatorcontrib><creatorcontrib>White, Charles I</creatorcontrib><title>Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell division</subject><subject>Centromere - genetics</subject><subject>Chromosome Pairing - genetics</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Chromosomes - genetics</subject><subject>DNA Fragmentation</subject><subject>Euchromatin - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Heterochromatin</subject><subject>Life Sciences</subject><subject>Meiosis - genetics</subject><subject>Mutant Proteins - genetics</subject><subject>Physiological aspects</subject><subject>Plant genetics</subject><subject>Plant Infertility</subject><subject>Proteins</subject><subject>Rad51 Recombinase - genetics</subject><subject>Rec A Recombinases - genetics</subject><subject>Recombination, Genetic - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwDxBEQkIg0eLPJL5BqjpgkwqTxset5TjHrafE7uxkwL_HbbNpnXYB8kXs4-d9nXOOTpY9x2iKaYnfX_ghONVO10twU4wQKWjxIDvEnNNJyRB7eGt_kD2J8QIhyitRPs4OCOGUVIgdZr-OrTEQrFvmAS4HG6AD18fc-JCfz445zpVr8uMvc5xbl3dgfW91vlZ2K_Em1wkPvoMAcYvqVTr5mCK5Cl3cqGZB1bbx62hj3q9Ua5VTT7NHRrURno3fo-zHp4_f5yeTxdnn0_lsMdEVEf2ElCVOm8qQAnRdU2o0NlAVGChnRYErWgpdl0IVDBirDS4bQxpdUBBEc8HpUfZy57tufZRjzaLEFFNOK8zLRJzuiMarC7kOtlPhj_TKym3Ah6VUISXdgmywYVxpRIwiDJNaCEExanBjKmBEkOT1YXxtqDtotrVR7Z7p_o2zK7n0V5JSijDaGLzbGazuyE5mC2ldhNBJhAVKTSVXOOFvxveCvxwg9rKzUUPbKgd-SGkiJCpEEacJfXUHvb8YI7VUKV_rjE-_qTemckYqwSjmDCVqeg-VVgOd1d6BsSm-J3i7J0hMD7_7pRpilKffzv-D_frv7NnPffb1LXYFqu1X0bdDb72L-yDbgTr4GAOYm0ZgJDejd105uRk9OY5ekr243fsb0fWs0b-AiCY3</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Da Ines, Olivier</creator><creator>Abe, Kiyomi</creator><creator>Goubely, Chantal</creator><creator>Gallego, Maria Eugenia</creator><creator>White, Charles I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8152-5797</orcidid><orcidid>https://orcid.org/0000-0002-1868-3781</orcidid></search><sort><creationdate>20120401</creationdate><title>Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana</title><author>Da Ines, Olivier ; Abe, Kiyomi ; Goubely, Chantal ; Gallego, Maria Eugenia ; White, Charles I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c829t-27718298f26ecbb33fc1fe861e3546618379cb79a64e44bf17df2dc63e92c5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell division</topic><topic>Centromere - genetics</topic><topic>Chromosome Pairing - genetics</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Chromosomes - genetics</topic><topic>DNA Fragmentation</topic><topic>Euchromatin - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Heterochromatin</topic><topic>Life Sciences</topic><topic>Meiosis - genetics</topic><topic>Mutant Proteins - genetics</topic><topic>Physiological aspects</topic><topic>Plant genetics</topic><topic>Plant Infertility</topic><topic>Proteins</topic><topic>Rad51 Recombinase - genetics</topic><topic>Rec A Recombinases - genetics</topic><topic>Recombination, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Ines, Olivier</creatorcontrib><creatorcontrib>Abe, Kiyomi</creatorcontrib><creatorcontrib>Goubely, Chantal</creatorcontrib><creatorcontrib>Gallego, Maria Eugenia</creatorcontrib><creatorcontrib>White, Charles I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Ines, Olivier</au><au>Abe, Kiyomi</au><au>Goubely, Chantal</au><au>Gallego, Maria Eugenia</au><au>White, Charles I</au><au>Pawlowski, Wojciech P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>8</volume><issue>4</issue><spage>e1002636</spage><epage>e1002636</epage><pages>e1002636-e1002636</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22532804</pmid><doi>10.1371/journal.pgen.1002636</doi><orcidid>https://orcid.org/0000-0001-8152-5797</orcidid><orcidid>https://orcid.org/0000-0002-1868-3781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2012-04, Vol.8 (4), p.e1002636-e1002636 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313538157 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis thaliana Biology Cell Cycle Proteins - genetics Cell division Centromere - genetics Chromosome Pairing - genetics Chromosome Segregation Chromosomes Chromosomes - genetics DNA Fragmentation Euchromatin - genetics Genes Genetic aspects Genetics Genomics Heterochromatin Life Sciences Meiosis - genetics Mutant Proteins - genetics Physiological aspects Plant genetics Plant Infertility Proteins Rad51 Recombinase - genetics Rec A Recombinases - genetics Recombination, Genetic - genetics |
title | Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differing%20requirements%20for%20RAD51%20and%20DMC1%20in%20meiotic%20pairing%20of%20centromeres%20and%20chromosome%20arms%20in%20Arabidopsis%20thaliana&rft.jtitle=PLoS%20genetics&rft.au=Da%20Ines,%20Olivier&rft.date=2012-04-01&rft.volume=8&rft.issue=4&rft.spage=e1002636&rft.epage=e1002636&rft.pages=e1002636-e1002636&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002636&rft_dat=%3Cgale_plos_%3EA289431540%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313538157&rft_id=info:pmid/22532804&rft_galeid=A289431540&rft_doaj_id=oai_doaj_org_article_d1f45ac02fa2412b999310d1df8e4292&rfr_iscdi=true |