Genetic and computational identification of a conserved bacterial metabolic module
We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive for...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2008-12, Vol.4 (12), p.e1000310-e1000310 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000310 |
---|---|
container_issue | 12 |
container_start_page | e1000310 |
container_title | PLoS genetics |
container_volume | 4 |
creator | Boutte, Cara C Srinivasan, Balaji S Flannick, Jason A Novak, Antal F Martens, Andrew T Batzoglou, Serafim Viollier, Patrick H Crosson, Sean |
description | We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species. |
doi_str_mv | 10.1371/journal.pgen.1000310 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313534489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202372411</galeid><doaj_id>oai_doaj_org_article_a496e56e049540f1ac7b79d4b8f34e4b</doaj_id><sourcerecordid>A202372411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbK3-A9EBoeDFrvmcTG6EUrQuFAv14zZkkpPdLDOTNZkp-u_NdkfdAS-UXCScPOfNyTlvUTzHaImpwG-2YYy9bpe7NfRLjBCiGD0oTjHndCEYYg-PzifFk5S2GeG1FI-LEyyRrDjBp8XtFfQweFPq3pYmdLtx0IMPWbj0FvrBO2_uA2Vwpc5EnyDegS0bbQaIPnMdDLoJbdbogh1beFo8crpN8Gzaz4ov7999vvywuL65Wl1eXC-MIGJYUHDCyiZXXRkChjOLSCM1B8coF4zkAq3GssKa2UaKGru60pKDJNbSWgI9K14edHdtSGpqR1KYYsopY7XMxOpA2KC3ahd9p-MPFbRX94EQ10rH_PkWlGayAl4BYpIz5LA2ohHSsqZ2lAFrstbb6bWx6cCa3Juo25no_Kb3G7UOd4pwKQQWWeB8Eojh2whpUJ1PBtpW9xDGpAiiiFJJM_jqAK51Lsz3LmQ9s4fVBUGECsIwztTyL1ReFjqfxwTO5_gs4fUsITMDfB_WekxJrT7d_gf78d_Zm69z9vyI3YBuh00K7bg3WJqD7ACaGFKK4H43GiO1t_-veau9_dVk_5z24nhIf5Imv9Ofz0n_IA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20303393</pqid></control><display><type>article</type><title>Genetic and computational identification of a conserved bacterial metabolic module</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Boutte, Cara C ; Srinivasan, Balaji S ; Flannick, Jason A ; Novak, Antal F ; Martens, Andrew T ; Batzoglou, Serafim ; Viollier, Patrick H ; Crosson, Sean</creator><contributor>Laub, Michael T.</contributor><creatorcontrib>Boutte, Cara C ; Srinivasan, Balaji S ; Flannick, Jason A ; Novak, Antal F ; Martens, Andrew T ; Batzoglou, Serafim ; Viollier, Patrick H ; Crosson, Sean ; Laub, Michael T.</creatorcontrib><description>We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000310</identifier><identifier>PMID: 19096521</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alphaproteobacteria - genetics ; Alphaproteobacteria - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Base Sequence ; Binding Sites ; Biochemistry/Biocatalysis ; Carbon ; Caulobacter crescentus ; Caulobacter crescentus - chemistry ; Caulobacter crescentus - genetics ; Caulobacter crescentus - metabolism ; Cell Biology/Cell Growth and Division ; Cell Biology/Chemical Biology of the Cell ; Cell Biology/Gene Expression ; Chromosomes ; Computational Biology ; Conserved Sequence ; Experiments ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Genome, Bacterial ; Genomes ; Inositol - metabolism ; Metabolism ; Metabolites ; Methods ; Microbiology ; Microbiology/Environmental Microbiology ; Microbiology/Microbial Evolution and Genomics ; Microbiology/Microbial Physiology and Metabolism ; Molecular Biology ; Molecular Biology/Bioinformatics ; Molecular Sequence Data ; Mutagenesis, Insertional ; Operon ; Physiology/Genomics ; Physiology/Sensory Systems ; Proteins ; Sinorhizobium meliloti</subject><ispartof>PLoS genetics, 2008-12, Vol.4 (12), p.e1000310-e1000310</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Boutte et al. 2008</rights><rights>2008 Boutte et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Boutte CC, Srinivasan BS, Flannick JA, Novak AF, Martens AT, et al. (2008) Genetic and Computational Identification of a Conserved Bacterial Metabolic Module. PLoS Genet 4(12): e1000310. doi:10.1371/journal.pgen.1000310</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</citedby><cites>FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597717/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597717/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19096521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Laub, Michael T.</contributor><creatorcontrib>Boutte, Cara C</creatorcontrib><creatorcontrib>Srinivasan, Balaji S</creatorcontrib><creatorcontrib>Flannick, Jason A</creatorcontrib><creatorcontrib>Novak, Antal F</creatorcontrib><creatorcontrib>Martens, Andrew T</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><creatorcontrib>Viollier, Patrick H</creatorcontrib><creatorcontrib>Crosson, Sean</creatorcontrib><title>Genetic and computational identification of a conserved bacterial metabolic module</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</description><subject>Algorithms</subject><subject>Alphaproteobacteria - genetics</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biochemistry/Biocatalysis</subject><subject>Carbon</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - chemistry</subject><subject>Caulobacter crescentus - genetics</subject><subject>Caulobacter crescentus - metabolism</subject><subject>Cell Biology/Cell Growth and Division</subject><subject>Cell Biology/Chemical Biology of the Cell</subject><subject>Cell Biology/Gene Expression</subject><subject>Chromosomes</subject><subject>Computational Biology</subject><subject>Conserved Sequence</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Inositol - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Microbiology/Environmental Microbiology</subject><subject>Microbiology/Microbial Evolution and Genomics</subject><subject>Microbiology/Microbial Physiology and Metabolism</subject><subject>Molecular Biology</subject><subject>Molecular Biology/Bioinformatics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>Operon</subject><subject>Physiology/Genomics</subject><subject>Physiology/Sensory Systems</subject><subject>Proteins</subject><subject>Sinorhizobium meliloti</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbK3-A9EBoeDFrvmcTG6EUrQuFAv14zZkkpPdLDOTNZkp-u_NdkfdAS-UXCScPOfNyTlvUTzHaImpwG-2YYy9bpe7NfRLjBCiGD0oTjHndCEYYg-PzifFk5S2GeG1FI-LEyyRrDjBp8XtFfQweFPq3pYmdLtx0IMPWbj0FvrBO2_uA2Vwpc5EnyDegS0bbQaIPnMdDLoJbdbogh1beFo8crpN8Gzaz4ov7999vvywuL65Wl1eXC-MIGJYUHDCyiZXXRkChjOLSCM1B8coF4zkAq3GssKa2UaKGru60pKDJNbSWgI9K14edHdtSGpqR1KYYsopY7XMxOpA2KC3ahd9p-MPFbRX94EQ10rH_PkWlGayAl4BYpIz5LA2ohHSsqZ2lAFrstbb6bWx6cCa3Juo25no_Kb3G7UOd4pwKQQWWeB8Eojh2whpUJ1PBtpW9xDGpAiiiFJJM_jqAK51Lsz3LmQ9s4fVBUGECsIwztTyL1ReFjqfxwTO5_gs4fUsITMDfB_WekxJrT7d_gf78d_Zm69z9vyI3YBuh00K7bg3WJqD7ACaGFKK4H43GiO1t_-veau9_dVk_5z24nhIf5Imv9Ofz0n_IA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Boutte, Cara C</creator><creator>Srinivasan, Balaji S</creator><creator>Flannick, Jason A</creator><creator>Novak, Antal F</creator><creator>Martens, Andrew T</creator><creator>Batzoglou, Serafim</creator><creator>Viollier, Patrick H</creator><creator>Crosson, Sean</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081201</creationdate><title>Genetic and computational identification of a conserved bacterial metabolic module</title><author>Boutte, Cara C ; Srinivasan, Balaji S ; Flannick, Jason A ; Novak, Antal F ; Martens, Andrew T ; Batzoglou, Serafim ; Viollier, Patrick H ; Crosson, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Alphaproteobacteria - genetics</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biochemistry/Biocatalysis</topic><topic>Carbon</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - chemistry</topic><topic>Caulobacter crescentus - genetics</topic><topic>Caulobacter crescentus - metabolism</topic><topic>Cell Biology/Cell Growth and Division</topic><topic>Cell Biology/Chemical Biology of the Cell</topic><topic>Cell Biology/Gene Expression</topic><topic>Chromosomes</topic><topic>Computational Biology</topic><topic>Conserved Sequence</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Inositol - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Microbiology/Environmental Microbiology</topic><topic>Microbiology/Microbial Evolution and Genomics</topic><topic>Microbiology/Microbial Physiology and Metabolism</topic><topic>Molecular Biology</topic><topic>Molecular Biology/Bioinformatics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>Operon</topic><topic>Physiology/Genomics</topic><topic>Physiology/Sensory Systems</topic><topic>Proteins</topic><topic>Sinorhizobium meliloti</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutte, Cara C</creatorcontrib><creatorcontrib>Srinivasan, Balaji S</creatorcontrib><creatorcontrib>Flannick, Jason A</creatorcontrib><creatorcontrib>Novak, Antal F</creatorcontrib><creatorcontrib>Martens, Andrew T</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><creatorcontrib>Viollier, Patrick H</creatorcontrib><creatorcontrib>Crosson, Sean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutte, Cara C</au><au>Srinivasan, Balaji S</au><au>Flannick, Jason A</au><au>Novak, Antal F</au><au>Martens, Andrew T</au><au>Batzoglou, Serafim</au><au>Viollier, Patrick H</au><au>Crosson, Sean</au><au>Laub, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic and computational identification of a conserved bacterial metabolic module</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>4</volume><issue>12</issue><spage>e1000310</spage><epage>e1000310</epage><pages>e1000310-e1000310</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19096521</pmid><doi>10.1371/journal.pgen.1000310</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2008-12, Vol.4 (12), p.e1000310-e1000310 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313534489 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Algorithms Alphaproteobacteria - genetics Alphaproteobacteria - metabolism Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Base Sequence Binding Sites Biochemistry/Biocatalysis Carbon Caulobacter crescentus Caulobacter crescentus - chemistry Caulobacter crescentus - genetics Caulobacter crescentus - metabolism Cell Biology/Cell Growth and Division Cell Biology/Chemical Biology of the Cell Cell Biology/Gene Expression Chromosomes Computational Biology Conserved Sequence Experiments Gene expression Gene Expression Regulation, Bacterial Gene Regulatory Networks Genome, Bacterial Genomes Inositol - metabolism Metabolism Metabolites Methods Microbiology Microbiology/Environmental Microbiology Microbiology/Microbial Evolution and Genomics Microbiology/Microbial Physiology and Metabolism Molecular Biology Molecular Biology/Bioinformatics Molecular Sequence Data Mutagenesis, Insertional Operon Physiology/Genomics Physiology/Sensory Systems Proteins Sinorhizobium meliloti |
title | Genetic and computational identification of a conserved bacterial metabolic module |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20and%20computational%20identification%20of%20a%20conserved%20bacterial%20metabolic%20module&rft.jtitle=PLoS%20genetics&rft.au=Boutte,%20Cara%20C&rft.date=2008-12-01&rft.volume=4&rft.issue=12&rft.spage=e1000310&rft.epage=e1000310&rft.pages=e1000310-e1000310&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000310&rft_dat=%3Cgale_plos_%3EA202372411%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20303393&rft_id=info:pmid/19096521&rft_galeid=A202372411&rft_doaj_id=oai_doaj_org_article_a496e56e049540f1ac7b79d4b8f34e4b&rfr_iscdi=true |