Genetic and computational identification of a conserved bacterial metabolic module

We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2008-12, Vol.4 (12), p.e1000310-e1000310
Hauptverfasser: Boutte, Cara C, Srinivasan, Balaji S, Flannick, Jason A, Novak, Antal F, Martens, Andrew T, Batzoglou, Serafim, Viollier, Patrick H, Crosson, Sean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000310
container_issue 12
container_start_page e1000310
container_title PLoS genetics
container_volume 4
creator Boutte, Cara C
Srinivasan, Balaji S
Flannick, Jason A
Novak, Antal F
Martens, Andrew T
Batzoglou, Serafim
Viollier, Patrick H
Crosson, Sean
description We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.
doi_str_mv 10.1371/journal.pgen.1000310
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313534489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202372411</galeid><doaj_id>oai_doaj_org_article_a496e56e049540f1ac7b79d4b8f34e4b</doaj_id><sourcerecordid>A202372411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbK3-A9EBoeDFrvmcTG6EUrQuFAv14zZkkpPdLDOTNZkp-u_NdkfdAS-UXCScPOfNyTlvUTzHaImpwG-2YYy9bpe7NfRLjBCiGD0oTjHndCEYYg-PzifFk5S2GeG1FI-LEyyRrDjBp8XtFfQweFPq3pYmdLtx0IMPWbj0FvrBO2_uA2Vwpc5EnyDegS0bbQaIPnMdDLoJbdbogh1beFo8crpN8Gzaz4ov7999vvywuL65Wl1eXC-MIGJYUHDCyiZXXRkChjOLSCM1B8coF4zkAq3GssKa2UaKGru60pKDJNbSWgI9K14edHdtSGpqR1KYYsopY7XMxOpA2KC3ahd9p-MPFbRX94EQ10rH_PkWlGayAl4BYpIz5LA2ohHSsqZ2lAFrstbb6bWx6cCa3Juo25no_Kb3G7UOd4pwKQQWWeB8Eojh2whpUJ1PBtpW9xDGpAiiiFJJM_jqAK51Lsz3LmQ9s4fVBUGECsIwztTyL1ReFjqfxwTO5_gs4fUsITMDfB_WekxJrT7d_gf78d_Zm69z9vyI3YBuh00K7bg3WJqD7ACaGFKK4H43GiO1t_-veau9_dVk_5z24nhIf5Imv9Ofz0n_IA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20303393</pqid></control><display><type>article</type><title>Genetic and computational identification of a conserved bacterial metabolic module</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Boutte, Cara C ; Srinivasan, Balaji S ; Flannick, Jason A ; Novak, Antal F ; Martens, Andrew T ; Batzoglou, Serafim ; Viollier, Patrick H ; Crosson, Sean</creator><contributor>Laub, Michael T.</contributor><creatorcontrib>Boutte, Cara C ; Srinivasan, Balaji S ; Flannick, Jason A ; Novak, Antal F ; Martens, Andrew T ; Batzoglou, Serafim ; Viollier, Patrick H ; Crosson, Sean ; Laub, Michael T.</creatorcontrib><description>We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000310</identifier><identifier>PMID: 19096521</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alphaproteobacteria - genetics ; Alphaproteobacteria - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Base Sequence ; Binding Sites ; Biochemistry/Biocatalysis ; Carbon ; Caulobacter crescentus ; Caulobacter crescentus - chemistry ; Caulobacter crescentus - genetics ; Caulobacter crescentus - metabolism ; Cell Biology/Cell Growth and Division ; Cell Biology/Chemical Biology of the Cell ; Cell Biology/Gene Expression ; Chromosomes ; Computational Biology ; Conserved Sequence ; Experiments ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Genome, Bacterial ; Genomes ; Inositol - metabolism ; Metabolism ; Metabolites ; Methods ; Microbiology ; Microbiology/Environmental Microbiology ; Microbiology/Microbial Evolution and Genomics ; Microbiology/Microbial Physiology and Metabolism ; Molecular Biology ; Molecular Biology/Bioinformatics ; Molecular Sequence Data ; Mutagenesis, Insertional ; Operon ; Physiology/Genomics ; Physiology/Sensory Systems ; Proteins ; Sinorhizobium meliloti</subject><ispartof>PLoS genetics, 2008-12, Vol.4 (12), p.e1000310-e1000310</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Boutte et al. 2008</rights><rights>2008 Boutte et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Boutte CC, Srinivasan BS, Flannick JA, Novak AF, Martens AT, et al. (2008) Genetic and Computational Identification of a Conserved Bacterial Metabolic Module. PLoS Genet 4(12): e1000310. doi:10.1371/journal.pgen.1000310</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</citedby><cites>FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597717/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597717/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19096521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Laub, Michael T.</contributor><creatorcontrib>Boutte, Cara C</creatorcontrib><creatorcontrib>Srinivasan, Balaji S</creatorcontrib><creatorcontrib>Flannick, Jason A</creatorcontrib><creatorcontrib>Novak, Antal F</creatorcontrib><creatorcontrib>Martens, Andrew T</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><creatorcontrib>Viollier, Patrick H</creatorcontrib><creatorcontrib>Crosson, Sean</creatorcontrib><title>Genetic and computational identification of a conserved bacterial metabolic module</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</description><subject>Algorithms</subject><subject>Alphaproteobacteria - genetics</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biochemistry/Biocatalysis</subject><subject>Carbon</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - chemistry</subject><subject>Caulobacter crescentus - genetics</subject><subject>Caulobacter crescentus - metabolism</subject><subject>Cell Biology/Cell Growth and Division</subject><subject>Cell Biology/Chemical Biology of the Cell</subject><subject>Cell Biology/Gene Expression</subject><subject>Chromosomes</subject><subject>Computational Biology</subject><subject>Conserved Sequence</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Inositol - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Microbiology/Environmental Microbiology</subject><subject>Microbiology/Microbial Evolution and Genomics</subject><subject>Microbiology/Microbial Physiology and Metabolism</subject><subject>Molecular Biology</subject><subject>Molecular Biology/Bioinformatics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>Operon</subject><subject>Physiology/Genomics</subject><subject>Physiology/Sensory Systems</subject><subject>Proteins</subject><subject>Sinorhizobium meliloti</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbK3-A9EBoeDFrvmcTG6EUrQuFAv14zZkkpPdLDOTNZkp-u_NdkfdAS-UXCScPOfNyTlvUTzHaImpwG-2YYy9bpe7NfRLjBCiGD0oTjHndCEYYg-PzifFk5S2GeG1FI-LEyyRrDjBp8XtFfQweFPq3pYmdLtx0IMPWbj0FvrBO2_uA2Vwpc5EnyDegS0bbQaIPnMdDLoJbdbogh1beFo8crpN8Gzaz4ov7999vvywuL65Wl1eXC-MIGJYUHDCyiZXXRkChjOLSCM1B8coF4zkAq3GssKa2UaKGru60pKDJNbSWgI9K14edHdtSGpqR1KYYsopY7XMxOpA2KC3ahd9p-MPFbRX94EQ10rH_PkWlGayAl4BYpIz5LA2ohHSsqZ2lAFrstbb6bWx6cCa3Juo25no_Kb3G7UOd4pwKQQWWeB8Eojh2whpUJ1PBtpW9xDGpAiiiFJJM_jqAK51Lsz3LmQ9s4fVBUGECsIwztTyL1ReFjqfxwTO5_gs4fUsITMDfB_WekxJrT7d_gf78d_Zm69z9vyI3YBuh00K7bg3WJqD7ACaGFKK4H43GiO1t_-veau9_dVk_5z24nhIf5Imv9Ofz0n_IA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Boutte, Cara C</creator><creator>Srinivasan, Balaji S</creator><creator>Flannick, Jason A</creator><creator>Novak, Antal F</creator><creator>Martens, Andrew T</creator><creator>Batzoglou, Serafim</creator><creator>Viollier, Patrick H</creator><creator>Crosson, Sean</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081201</creationdate><title>Genetic and computational identification of a conserved bacterial metabolic module</title><author>Boutte, Cara C ; Srinivasan, Balaji S ; Flannick, Jason A ; Novak, Antal F ; Martens, Andrew T ; Batzoglou, Serafim ; Viollier, Patrick H ; Crosson, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-3ef7d9b3106c2ec54d02b9a5ef435742965da1961a4db9781f86a95e92dd389e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Alphaproteobacteria - genetics</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biochemistry/Biocatalysis</topic><topic>Carbon</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - chemistry</topic><topic>Caulobacter crescentus - genetics</topic><topic>Caulobacter crescentus - metabolism</topic><topic>Cell Biology/Cell Growth and Division</topic><topic>Cell Biology/Chemical Biology of the Cell</topic><topic>Cell Biology/Gene Expression</topic><topic>Chromosomes</topic><topic>Computational Biology</topic><topic>Conserved Sequence</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Inositol - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Microbiology/Environmental Microbiology</topic><topic>Microbiology/Microbial Evolution and Genomics</topic><topic>Microbiology/Microbial Physiology and Metabolism</topic><topic>Molecular Biology</topic><topic>Molecular Biology/Bioinformatics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>Operon</topic><topic>Physiology/Genomics</topic><topic>Physiology/Sensory Systems</topic><topic>Proteins</topic><topic>Sinorhizobium meliloti</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutte, Cara C</creatorcontrib><creatorcontrib>Srinivasan, Balaji S</creatorcontrib><creatorcontrib>Flannick, Jason A</creatorcontrib><creatorcontrib>Novak, Antal F</creatorcontrib><creatorcontrib>Martens, Andrew T</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><creatorcontrib>Viollier, Patrick H</creatorcontrib><creatorcontrib>Crosson, Sean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutte, Cara C</au><au>Srinivasan, Balaji S</au><au>Flannick, Jason A</au><au>Novak, Antal F</au><au>Martens, Andrew T</au><au>Batzoglou, Serafim</au><au>Viollier, Patrick H</au><au>Crosson, Sean</au><au>Laub, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic and computational identification of a conserved bacterial metabolic module</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>4</volume><issue>12</issue><spage>e1000310</spage><epage>e1000310</epage><pages>e1000310-e1000310</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19096521</pmid><doi>10.1371/journal.pgen.1000310</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2008-12, Vol.4 (12), p.e1000310-e1000310
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313534489
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Algorithms
Alphaproteobacteria - genetics
Alphaproteobacteria - metabolism
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Base Sequence
Binding Sites
Biochemistry/Biocatalysis
Carbon
Caulobacter crescentus
Caulobacter crescentus - chemistry
Caulobacter crescentus - genetics
Caulobacter crescentus - metabolism
Cell Biology/Cell Growth and Division
Cell Biology/Chemical Biology of the Cell
Cell Biology/Gene Expression
Chromosomes
Computational Biology
Conserved Sequence
Experiments
Gene expression
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genome, Bacterial
Genomes
Inositol - metabolism
Metabolism
Metabolites
Methods
Microbiology
Microbiology/Environmental Microbiology
Microbiology/Microbial Evolution and Genomics
Microbiology/Microbial Physiology and Metabolism
Molecular Biology
Molecular Biology/Bioinformatics
Molecular Sequence Data
Mutagenesis, Insertional
Operon
Physiology/Genomics
Physiology/Sensory Systems
Proteins
Sinorhizobium meliloti
title Genetic and computational identification of a conserved bacterial metabolic module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20and%20computational%20identification%20of%20a%20conserved%20bacterial%20metabolic%20module&rft.jtitle=PLoS%20genetics&rft.au=Boutte,%20Cara%20C&rft.date=2008-12-01&rft.volume=4&rft.issue=12&rft.spage=e1000310&rft.epage=e1000310&rft.pages=e1000310-e1000310&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000310&rft_dat=%3Cgale_plos_%3EA202372411%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20303393&rft_id=info:pmid/19096521&rft_galeid=A202372411&rft_doaj_id=oai_doaj_org_article_a496e56e049540f1ac7b79d4b8f34e4b&rfr_iscdi=true