Target site recognition by a diversity-generating retroelement

Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2011-12, Vol.7 (12), p.e1002414
Hauptverfasser: Guo, Huatao, Tse, Longping V, Nieh, Angela W, Czornyj, Elizabeth, Williams, Steven, Oukil, Sabrina, Liu, Vincent B, Miller, Jeff F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e1002414
container_title PLoS genetics
container_volume 7
creator Guo, Huatao
Tse, Longping V
Nieh, Angela W
Czornyj, Elizabeth
Williams, Steven
Oukil, Sabrina
Liu, Vincent B
Miller, Jeff F
description Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification.
doi_str_mv 10.1371/journal.pgen.1002414
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313527910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A276808742</galeid><doaj_id>oai_doaj_org_article_f06838c4f6d54e8d99df01a365f85838</doaj_id><sourcerecordid>A276808742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-9d2068765f82839493f8661cca87ff586050fd8871d64368ed46a1510fdd34203</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbK3-A9GBguDFrMnk-6ZQih8LxYJWb0Oaj9ksM5MlyRb335txt2UHvFBykXDOc95zkrxV9RqCBUQMfliHbRxVv9h0dlxAAFoM8ZPqFBKCGoYBfnp0PqlepLQGABEu2PPqpG2hwAzA0-riVsXO5jr5bOtodehGn30Y67tdrWrj720sqV1Tmtiosh-7QuUYbG8HO-aX1TOn-mRfHfaz6senj7dXX5rrm8_Lq8vrRlPBciNMCyhnlDjeciSwQI5TCrVWnDlHOAUEOMM5g4ZiRLk1mCpIYAkahFuAzqq3e91NH5I8XD1JiCAiLRNwIpZ7wgS1lpvoBxV3Migv_wRC7KSK2eveSldmQVxjRw3BlhshjANQoWk8UjJF6-LQbXs3WKPLRaPqZ6LzzOhXsgv3ErUYEDEJnO8FOlX6-dGFgunBJy0vW0Y54Ay3hVr8hSrL2MHrMFrnS3xW8H5WUJhsf-VObVOSy-_f_oP9-u_szc85--6IXVnV51UK_XYyTZqDeA_qGFKK1j2-HwRycvDDN8rJwfLg4FL25vjtH4seLIt-A36S6ak</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Target site recognition by a diversity-generating retroelement</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Guo, Huatao ; Tse, Longping V ; Nieh, Angela W ; Czornyj, Elizabeth ; Williams, Steven ; Oukil, Sabrina ; Liu, Vincent B ; Miller, Jeff F</creator><contributor>Burkholder, William F.</contributor><creatorcontrib>Guo, Huatao ; Tse, Longping V ; Nieh, Angela W ; Czornyj, Elizabeth ; Williams, Steven ; Oukil, Sabrina ; Liu, Vincent B ; Miller, Jeff F ; Burkholder, William F.</creatorcontrib><description>Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002414</identifier><identifier>PMID: 22194701</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteriology ; Bacteriophages - genetics ; Base Sequence ; Biology ; Bordetella - genetics ; Bordetella - virology ; Cloning ; Deoxyribonucleic acid ; DNA ; DNA, Complementary - genetics ; DNA, Cruciform - genetics ; Efficiency ; Genetic Variation ; Genomes ; Inverted Repeat Sequences - genetics ; Molecular Sequence Data ; Mutagenesis ; Nucleotides ; Open Reading Frames - genetics ; Physiological aspects ; Polymerase chain reaction ; Proteins ; Proteins - genetics ; Retroelements - genetics ; Structure-Activity Relationship ; Tropisms</subject><ispartof>PLoS genetics, 2011-12, Vol.7 (12), p.e1002414</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Guo et al. 2011</rights><rights>2011 Guo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Guo H, Tse LV, Nieh AW, Czornyj E, Williams S, et al. (2011) Target Site Recognition by a Diversity-Generating Retroelement. PLoS Genet 7(12): e1002414. doi:10.1371/journal.pgen.1002414</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-9d2068765f82839493f8661cca87ff586050fd8871d64368ed46a1510fdd34203</citedby><cites>FETCH-LOGICAL-c697t-9d2068765f82839493f8661cca87ff586050fd8871d64368ed46a1510fdd34203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240598/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240598/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Burkholder, William F.</contributor><creatorcontrib>Guo, Huatao</creatorcontrib><creatorcontrib>Tse, Longping V</creatorcontrib><creatorcontrib>Nieh, Angela W</creatorcontrib><creatorcontrib>Czornyj, Elizabeth</creatorcontrib><creatorcontrib>Williams, Steven</creatorcontrib><creatorcontrib>Oukil, Sabrina</creatorcontrib><creatorcontrib>Liu, Vincent B</creatorcontrib><creatorcontrib>Miller, Jeff F</creatorcontrib><title>Target site recognition by a diversity-generating retroelement</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification.</description><subject>Bacteriology</subject><subject>Bacteriophages - genetics</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Bordetella - genetics</subject><subject>Bordetella - virology</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Cruciform - genetics</subject><subject>Efficiency</subject><subject>Genetic Variation</subject><subject>Genomes</subject><subject>Inverted Repeat Sequences - genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nucleotides</subject><subject>Open Reading Frames - genetics</subject><subject>Physiological aspects</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Retroelements - genetics</subject><subject>Structure-Activity Relationship</subject><subject>Tropisms</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbK3-A9GBguDFrMnk-6ZQih8LxYJWb0Oaj9ksM5MlyRb335txt2UHvFBykXDOc95zkrxV9RqCBUQMfliHbRxVv9h0dlxAAFoM8ZPqFBKCGoYBfnp0PqlepLQGABEu2PPqpG2hwAzA0-riVsXO5jr5bOtodehGn30Y67tdrWrj720sqV1Tmtiosh-7QuUYbG8HO-aX1TOn-mRfHfaz6senj7dXX5rrm8_Lq8vrRlPBciNMCyhnlDjeciSwQI5TCrVWnDlHOAUEOMM5g4ZiRLk1mCpIYAkahFuAzqq3e91NH5I8XD1JiCAiLRNwIpZ7wgS1lpvoBxV3Migv_wRC7KSK2eveSldmQVxjRw3BlhshjANQoWk8UjJF6-LQbXs3WKPLRaPqZ6LzzOhXsgv3ErUYEDEJnO8FOlX6-dGFgunBJy0vW0Y54Ay3hVr8hSrL2MHrMFrnS3xW8H5WUJhsf-VObVOSy-_f_oP9-u_szc85--6IXVnV51UK_XYyTZqDeA_qGFKK1j2-HwRycvDDN8rJwfLg4FL25vjtH4seLIt-A36S6ak</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Guo, Huatao</creator><creator>Tse, Longping V</creator><creator>Nieh, Angela W</creator><creator>Czornyj, Elizabeth</creator><creator>Williams, Steven</creator><creator>Oukil, Sabrina</creator><creator>Liu, Vincent B</creator><creator>Miller, Jeff F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111201</creationdate><title>Target site recognition by a diversity-generating retroelement</title><author>Guo, Huatao ; Tse, Longping V ; Nieh, Angela W ; Czornyj, Elizabeth ; Williams, Steven ; Oukil, Sabrina ; Liu, Vincent B ; Miller, Jeff F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-9d2068765f82839493f8661cca87ff586050fd8871d64368ed46a1510fdd34203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteriology</topic><topic>Bacteriophages - genetics</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Bordetella - genetics</topic><topic>Bordetella - virology</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Cruciform - genetics</topic><topic>Efficiency</topic><topic>Genetic Variation</topic><topic>Genomes</topic><topic>Inverted Repeat Sequences - genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nucleotides</topic><topic>Open Reading Frames - genetics</topic><topic>Physiological aspects</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Retroelements - genetics</topic><topic>Structure-Activity Relationship</topic><topic>Tropisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huatao</creatorcontrib><creatorcontrib>Tse, Longping V</creatorcontrib><creatorcontrib>Nieh, Angela W</creatorcontrib><creatorcontrib>Czornyj, Elizabeth</creatorcontrib><creatorcontrib>Williams, Steven</creatorcontrib><creatorcontrib>Oukil, Sabrina</creatorcontrib><creatorcontrib>Liu, Vincent B</creatorcontrib><creatorcontrib>Miller, Jeff F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huatao</au><au>Tse, Longping V</au><au>Nieh, Angela W</au><au>Czornyj, Elizabeth</au><au>Williams, Steven</au><au>Oukil, Sabrina</au><au>Liu, Vincent B</au><au>Miller, Jeff F</au><au>Burkholder, William F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target site recognition by a diversity-generating retroelement</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>7</volume><issue>12</issue><spage>e1002414</spage><pages>e1002414-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22194701</pmid><doi>10.1371/journal.pgen.1002414</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2011-12, Vol.7 (12), p.e1002414
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313527910
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacteriology
Bacteriophages - genetics
Base Sequence
Biology
Bordetella - genetics
Bordetella - virology
Cloning
Deoxyribonucleic acid
DNA
DNA, Complementary - genetics
DNA, Cruciform - genetics
Efficiency
Genetic Variation
Genomes
Inverted Repeat Sequences - genetics
Molecular Sequence Data
Mutagenesis
Nucleotides
Open Reading Frames - genetics
Physiological aspects
Polymerase chain reaction
Proteins
Proteins - genetics
Retroelements - genetics
Structure-Activity Relationship
Tropisms
title Target site recognition by a diversity-generating retroelement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20site%20recognition%20by%20a%20diversity-generating%20retroelement&rft.jtitle=PLoS%20genetics&rft.au=Guo,%20Huatao&rft.date=2011-12-01&rft.volume=7&rft.issue=12&rft.spage=e1002414&rft.pages=e1002414-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002414&rft_dat=%3Cgale_plos_%3EA276808742%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22194701&rft_galeid=A276808742&rft_doaj_id=oai_doaj_org_article_f06838c4f6d54e8d99df01a365f85838&rfr_iscdi=true