Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites
Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves o...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2009-09, Vol.5 (9), p.e1000662-e1000662 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000662 |
---|---|
container_issue | 9 |
container_start_page | e1000662 |
container_title | PLoS genetics |
container_volume | 5 |
creator | Ferjentsik, Zoltan Hayashi, Shinichi Dale, J Kim Bessho, Yasumasa Herreman, An De Strooper, Bart del Monte, Gonzalo de la Pompa, Jose Luis Maroto, Miguel |
description | Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis. |
doi_str_mv | 10.1371/journal.pgen.1000662 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313527448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A217362579</galeid><doaj_id>oai_doaj_org_article_572b378a59b04833abeae5031cf5501b</doaj_id><sourcerecordid>A217362579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c763t-604d1f440fc473770a806537659241b520546a92f1eb0c8ce187c72239eb7da3</originalsourceid><addsrcrecordid>eNqVk1-L1DAUxYso7rr6DUQLguLDjEmTNO2LsCz-GVh2QRdfQ5redjK0zWySin57b3e6OgUflD6k3PzOSTg3N0meU7KmTNJ3Ozf6QXfrfQvDmhJC8jx7kJxSIdhKcsIfHv2fJE9C2BHCRFHKx8kJLaUscfM0Ga9cNNvUhlSnxttoje5S4_q9G2CIqWvSuIW0d2OANLjeRofHQUDeBWO7TkfnUz3UkwOEgBqLBg0WJx2uvY7WDfdGdxYQniaPGt0FeDavZ8nNxw83F59Xl9efNhfnlysjcxZXOeE1bTgnjeGSSUl0QXLBZC7KjNNKZETwXJdZQ6EipjBAC2lklrESKllrdpa8PNjuOxfUHFhQlFEmMsl5gcTmQNRO79Te2177n8ppq-4KzrdKewylAyVkVjFZaFFWBJVMV6BBEEZNIwShFXq9n08bqx5qg1l43S1MlzuD3arWfVeZZCXnFA3ezAbe3Y4QouptMIAhD4ANUJJxIkouciRfHchW483s0Dg0NBOtzjMqWZ4JWSK1_guFXw29NdjgxmJ9IXi7ECAT4Uds9RiC2nz98h_s1b-z19-W7Osjdgu6i9vgunF6RWEJ8gNovAvBQ_M7aUrUNCH3DVfThKh5QlD24rhLf0TzSLBfOnwLTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734059456</pqid></control><display><type>article</type><title>Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites</title><source>MEDLINE</source><source>Public Library of Science</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Ferjentsik, Zoltan ; Hayashi, Shinichi ; Dale, J Kim ; Bessho, Yasumasa ; Herreman, An ; De Strooper, Bart ; del Monte, Gonzalo ; de la Pompa, Jose Luis ; Maroto, Miguel</creator><creatorcontrib>Ferjentsik, Zoltan ; Hayashi, Shinichi ; Dale, J Kim ; Bessho, Yasumasa ; Herreman, An ; De Strooper, Bart ; del Monte, Gonzalo ; de la Pompa, Jose Luis ; Maroto, Miguel</creatorcontrib><description>Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000662</identifier><identifier>PMID: 19779553</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological Clocks ; Body Patterning - genetics ; Cellular signal transduction ; Developmental Biology ; Developmental Biology/Cell Differentiation ; Developmental Biology/Developmental Molecular Mechanisms ; Developmental Biology/Embryology ; Developmental Biology/Molecular Development ; Developmental Biology/Morphogenesis and Cell Biology ; Developmental Biology/Organogenesis ; Developmental Biology/Pattern Formation ; Embryo, Mammalian - metabolism ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Gene Expression Regulation, Developmental ; Genetic aspects ; Genomics ; Glycosyltransferases - deficiency ; Glycosyltransferases - genetics ; Glycosyltransferases - metabolism ; Laboratories ; Mice ; Mutation - genetics ; Organogenesis ; Presenilin-1 - genetics ; Presenilin-1 - metabolism ; Presenilin-2 - genetics ; Presenilin-2 - metabolism ; Proteins ; Receptors, Notch - metabolism ; Somite ; Somites - embryology ; Somites - metabolism ; Wnt Proteins - metabolism ; Zebrafish</subject><ispartof>PLoS genetics, 2009-09, Vol.5 (9), p.e1000662-e1000662</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Ferjentsik et al. 2009</rights><rights>2009 Ferjentsik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ferjentsik Z, Hayashi S, Dale JK, Bessho Y, Herreman A, et al. (2009) Notch Is a Critical Component of the Mouse Somitogenesis Oscillator and Is Essential for the Formation of the Somites. PLoS Genet 5(9): e1000662. doi:10.1371/journal.pgen.1000662</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c763t-604d1f440fc473770a806537659241b520546a92f1eb0c8ce187c72239eb7da3</citedby><cites>FETCH-LOGICAL-c763t-604d1f440fc473770a806537659241b520546a92f1eb0c8ce187c72239eb7da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739441/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739441/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19779553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferjentsik, Zoltan</creatorcontrib><creatorcontrib>Hayashi, Shinichi</creatorcontrib><creatorcontrib>Dale, J Kim</creatorcontrib><creatorcontrib>Bessho, Yasumasa</creatorcontrib><creatorcontrib>Herreman, An</creatorcontrib><creatorcontrib>De Strooper, Bart</creatorcontrib><creatorcontrib>del Monte, Gonzalo</creatorcontrib><creatorcontrib>de la Pompa, Jose Luis</creatorcontrib><creatorcontrib>Maroto, Miguel</creatorcontrib><title>Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.</description><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological Clocks</subject><subject>Body Patterning - genetics</subject><subject>Cellular signal transduction</subject><subject>Developmental Biology</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Developmental Molecular Mechanisms</subject><subject>Developmental Biology/Embryology</subject><subject>Developmental Biology/Molecular Development</subject><subject>Developmental Biology/Morphogenesis and Cell Biology</subject><subject>Developmental Biology/Organogenesis</subject><subject>Developmental Biology/Pattern Formation</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glycosyltransferases - deficiency</subject><subject>Glycosyltransferases - genetics</subject><subject>Glycosyltransferases - metabolism</subject><subject>Laboratories</subject><subject>Mice</subject><subject>Mutation - genetics</subject><subject>Organogenesis</subject><subject>Presenilin-1 - genetics</subject><subject>Presenilin-1 - metabolism</subject><subject>Presenilin-2 - genetics</subject><subject>Presenilin-2 - metabolism</subject><subject>Proteins</subject><subject>Receptors, Notch - metabolism</subject><subject>Somite</subject><subject>Somites - embryology</subject><subject>Somites - metabolism</subject><subject>Wnt Proteins - metabolism</subject><subject>Zebrafish</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1-L1DAUxYso7rr6DUQLguLDjEmTNO2LsCz-GVh2QRdfQ5redjK0zWySin57b3e6OgUflD6k3PzOSTg3N0meU7KmTNJ3Ozf6QXfrfQvDmhJC8jx7kJxSIdhKcsIfHv2fJE9C2BHCRFHKx8kJLaUscfM0Ga9cNNvUhlSnxttoje5S4_q9G2CIqWvSuIW0d2OANLjeRofHQUDeBWO7TkfnUz3UkwOEgBqLBg0WJx2uvY7WDfdGdxYQniaPGt0FeDavZ8nNxw83F59Xl9efNhfnlysjcxZXOeE1bTgnjeGSSUl0QXLBZC7KjNNKZETwXJdZQ6EipjBAC2lklrESKllrdpa8PNjuOxfUHFhQlFEmMsl5gcTmQNRO79Te2177n8ppq-4KzrdKewylAyVkVjFZaFFWBJVMV6BBEEZNIwShFXq9n08bqx5qg1l43S1MlzuD3arWfVeZZCXnFA3ezAbe3Y4QouptMIAhD4ANUJJxIkouciRfHchW483s0Dg0NBOtzjMqWZ4JWSK1_guFXw29NdjgxmJ9IXi7ECAT4Uds9RiC2nz98h_s1b-z19-W7Osjdgu6i9vgunF6RWEJ8gNovAvBQ_M7aUrUNCH3DVfThKh5QlD24rhLf0TzSLBfOnwLTQ</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Ferjentsik, Zoltan</creator><creator>Hayashi, Shinichi</creator><creator>Dale, J Kim</creator><creator>Bessho, Yasumasa</creator><creator>Herreman, An</creator><creator>De Strooper, Bart</creator><creator>del Monte, Gonzalo</creator><creator>de la Pompa, Jose Luis</creator><creator>Maroto, Miguel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090901</creationdate><title>Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites</title><author>Ferjentsik, Zoltan ; Hayashi, Shinichi ; Dale, J Kim ; Bessho, Yasumasa ; Herreman, An ; De Strooper, Bart ; del Monte, Gonzalo ; de la Pompa, Jose Luis ; Maroto, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c763t-604d1f440fc473770a806537659241b520546a92f1eb0c8ce187c72239eb7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological Clocks</topic><topic>Body Patterning - genetics</topic><topic>Cellular signal transduction</topic><topic>Developmental Biology</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Developmental Molecular Mechanisms</topic><topic>Developmental Biology/Embryology</topic><topic>Developmental Biology/Molecular Development</topic><topic>Developmental Biology/Morphogenesis and Cell Biology</topic><topic>Developmental Biology/Organogenesis</topic><topic>Developmental Biology/Pattern Formation</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glycosyltransferases - deficiency</topic><topic>Glycosyltransferases - genetics</topic><topic>Glycosyltransferases - metabolism</topic><topic>Laboratories</topic><topic>Mice</topic><topic>Mutation - genetics</topic><topic>Organogenesis</topic><topic>Presenilin-1 - genetics</topic><topic>Presenilin-1 - metabolism</topic><topic>Presenilin-2 - genetics</topic><topic>Presenilin-2 - metabolism</topic><topic>Proteins</topic><topic>Receptors, Notch - metabolism</topic><topic>Somite</topic><topic>Somites - embryology</topic><topic>Somites - metabolism</topic><topic>Wnt Proteins - metabolism</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferjentsik, Zoltan</creatorcontrib><creatorcontrib>Hayashi, Shinichi</creatorcontrib><creatorcontrib>Dale, J Kim</creatorcontrib><creatorcontrib>Bessho, Yasumasa</creatorcontrib><creatorcontrib>Herreman, An</creatorcontrib><creatorcontrib>De Strooper, Bart</creatorcontrib><creatorcontrib>del Monte, Gonzalo</creatorcontrib><creatorcontrib>de la Pompa, Jose Luis</creatorcontrib><creatorcontrib>Maroto, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferjentsik, Zoltan</au><au>Hayashi, Shinichi</au><au>Dale, J Kim</au><au>Bessho, Yasumasa</au><au>Herreman, An</au><au>De Strooper, Bart</au><au>del Monte, Gonzalo</au><au>de la Pompa, Jose Luis</au><au>Maroto, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>5</volume><issue>9</issue><spage>e1000662</spage><epage>e1000662</epage><pages>e1000662-e1000662</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19779553</pmid><doi>10.1371/journal.pgen.1000662</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2009-09, Vol.5 (9), p.e1000662-e1000662 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313527448 |
source | MEDLINE; Public Library of Science; PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Animals Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Biological Clocks Body Patterning - genetics Cellular signal transduction Developmental Biology Developmental Biology/Cell Differentiation Developmental Biology/Developmental Molecular Mechanisms Developmental Biology/Embryology Developmental Biology/Molecular Development Developmental Biology/Morphogenesis and Cell Biology Developmental Biology/Organogenesis Developmental Biology/Pattern Formation Embryo, Mammalian - metabolism Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Gene Expression Regulation, Developmental Genetic aspects Genomics Glycosyltransferases - deficiency Glycosyltransferases - genetics Glycosyltransferases - metabolism Laboratories Mice Mutation - genetics Organogenesis Presenilin-1 - genetics Presenilin-1 - metabolism Presenilin-2 - genetics Presenilin-2 - metabolism Proteins Receptors, Notch - metabolism Somite Somites - embryology Somites - metabolism Wnt Proteins - metabolism Zebrafish |
title | Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notch%20is%20a%20critical%20component%20of%20the%20mouse%20somitogenesis%20oscillator%20and%20is%20essential%20for%20the%20formation%20of%20the%20somites&rft.jtitle=PLoS%20genetics&rft.au=Ferjentsik,%20Zoltan&rft.date=2009-09-01&rft.volume=5&rft.issue=9&rft.spage=e1000662&rft.epage=e1000662&rft.pages=e1000662-e1000662&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000662&rft_dat=%3Cgale_plos_%3EA217362579%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734059456&rft_id=info:pmid/19779553&rft_galeid=A217362579&rft_doaj_id=oai_doaj_org_article_572b378a59b04833abeae5031cf5501b&rfr_iscdi=true |