Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding
The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2012-09, Vol.8 (9), p.e1002924-e1002924 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002924 |
---|---|
container_issue | 9 |
container_start_page | e1002924 |
container_title | PLoS genetics |
container_volume | 8 |
creator | Zou, Changjiang Levine, Edward M |
description | The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27(Kip1). Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele. |
doi_str_mv | 10.1371/journal.pgen.1002924 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313523448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A305191898</galeid><doaj_id>oai_doaj_org_article_8c070c1f2027477a935b662801c2e509</doaj_id><sourcerecordid>A305191898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-51b75f5a9b118f7dd79d41a2c3f6d85eb9501b194102079d22e8f210892032c3</originalsourceid><addsrcrecordid>eNqVk11r2zAUhs3YWLtu_2BsgsHYLpLpw4qsm0HovgKlha30VsiWZCs4UirZpfkd-8OTG7fEoxcbupA4es57pFc6WfYawTkiDH1a-z442c63tXZzBCHmOH-SHSNKyYzlMH96sD7KXsS4hpDQgrPn2REmEBckJ8fZ76t4i0HlXRd8G4HeaeBDLZ1PqjraCKRTIOjOplJgG4aw7XwAVmnX2W4HbqwEjd9or_xGWnfHO-9mh7GQlFSvY1pc9zZoBUySaGzdAGmMdYPOl_MlKK1T1tUvs2dGtlG_GueT7PLb18vTH7Ozi--r0-XZrGJ40c0oKhk1VPISocIwpRhXOZK4ImahCqpLTiEqEc8RxDDtYawLgxEsOIYkUSfZ273stvVRjHZGgQgiFJM8LxKx2hPKy7XYBruRYSe8tOIukIwSMnS2arUoKshghQyGmOWMSU5ouVjgAqIKawp50vo8VuvLjVZVsi_IdiI63XG2EbW_EekkjBOcBD6MAsFfJzM7sbGx0m0rnfZ9OjcscA4pW6CEvvsLffx2I1XLdAHrjE91q0FULAmkiKOCD9T8ESoNpTc2_RttbIpPEj5OEoa_pW-7WvYxitWvn__Bnv87e3E1Zd8fsI2WbddE3_ad9S5OwXwPVsHHGLR5eBAExdBm986Joc3E2GYp7c3hYz4k3fcV-QOw0CIo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313523448</pqid></control><display><type>article</type><title>Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Zou, Changjiang ; Levine, Edward M</creator><contributor>Desplan, Claude</contributor><creatorcontrib>Zou, Changjiang ; Levine, Edward M ; Desplan, Claude</creatorcontrib><description>The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27(Kip1). Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002924</identifier><identifier>PMID: 23028343</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Animals ; Binding sites ; Biology ; Cyclin-Dependent Kinase Inhibitor p27 - genetics ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-ligand interactions ; Eye ; Eye - growth & development ; Gene expression ; Gene Expression Regulation, Developmental ; Genetic aspects ; Genetics ; Health aspects ; HEK293 Cells ; Homeobox genes ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Homeotic genes ; Humans ; Medicine ; Mice ; Mice, Transgenic ; Microphthalmia-Associated Transcription Factor - genetics ; Microphthalmia-Associated Transcription Factor - metabolism ; Mutation ; Mutation - genetics ; Organogenesis - genetics ; Otx Transcription Factors - genetics ; Physiological aspects ; Protein Structure, Tertiary - genetics ; Proteins ; Retina ; Retina - growth & development ; Retina - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PLoS genetics, 2012-09, Vol.8 (9), p.e1002924-e1002924</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Levine, Zou. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zou C, Levine EM (2012) Vsx2 Controls Eye Organogenesis and Retinal Progenitor Identity Via Homeodomain and Non-Homeodomain Residues Required for High Affinity DNA Binding. PLoS Genet 8(9): e1002924. doi:10.1371/journal.pgen.1002924</rights><rights>2012 Levine, Zou 2012 Levine, Zou</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-51b75f5a9b118f7dd79d41a2c3f6d85eb9501b194102079d22e8f210892032c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447932/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447932/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23028343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Desplan, Claude</contributor><creatorcontrib>Zou, Changjiang</creatorcontrib><creatorcontrib>Levine, Edward M</creatorcontrib><title>Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27(Kip1). Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele.</description><subject>Alleles</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Cyclin-Dependent Kinase Inhibitor p27 - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-ligand interactions</subject><subject>Eye</subject><subject>Eye - growth & development</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Homeobox genes</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Homeotic genes</subject><subject>Humans</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microphthalmia-Associated Transcription Factor - genetics</subject><subject>Microphthalmia-Associated Transcription Factor - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Organogenesis - genetics</subject><subject>Otx Transcription Factors - genetics</subject><subject>Physiological aspects</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retina - growth & development</subject><subject>Retina - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11r2zAUhs3YWLtu_2BsgsHYLpLpw4qsm0HovgKlha30VsiWZCs4UirZpfkd-8OTG7fEoxcbupA4es57pFc6WfYawTkiDH1a-z442c63tXZzBCHmOH-SHSNKyYzlMH96sD7KXsS4hpDQgrPn2REmEBckJ8fZ76t4i0HlXRd8G4HeaeBDLZ1PqjraCKRTIOjOplJgG4aw7XwAVmnX2W4HbqwEjd9or_xGWnfHO-9mh7GQlFSvY1pc9zZoBUySaGzdAGmMdYPOl_MlKK1T1tUvs2dGtlG_GueT7PLb18vTH7Ozi--r0-XZrGJ40c0oKhk1VPISocIwpRhXOZK4ImahCqpLTiEqEc8RxDDtYawLgxEsOIYkUSfZ273stvVRjHZGgQgiFJM8LxKx2hPKy7XYBruRYSe8tOIukIwSMnS2arUoKshghQyGmOWMSU5ouVjgAqIKawp50vo8VuvLjVZVsi_IdiI63XG2EbW_EekkjBOcBD6MAsFfJzM7sbGx0m0rnfZ9OjcscA4pW6CEvvsLffx2I1XLdAHrjE91q0FULAmkiKOCD9T8ESoNpTc2_RttbIpPEj5OEoa_pW-7WvYxitWvn__Bnv87e3E1Zd8fsI2WbddE3_ad9S5OwXwPVsHHGLR5eBAExdBm986Joc3E2GYp7c3hYz4k3fcV-QOw0CIo</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Zou, Changjiang</creator><creator>Levine, Edward M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120901</creationdate><title>Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding</title><author>Zou, Changjiang ; Levine, Edward M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-51b75f5a9b118f7dd79d41a2c3f6d85eb9501b194102079d22e8f210892032c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Cyclin-Dependent Kinase Inhibitor p27 - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-ligand interactions</topic><topic>Eye</topic><topic>Eye - growth & development</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Homeobox genes</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Homeotic genes</topic><topic>Humans</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microphthalmia-Associated Transcription Factor - genetics</topic><topic>Microphthalmia-Associated Transcription Factor - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Organogenesis - genetics</topic><topic>Otx Transcription Factors - genetics</topic><topic>Physiological aspects</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retina - growth & development</topic><topic>Retina - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Changjiang</creatorcontrib><creatorcontrib>Levine, Edward M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Changjiang</au><au>Levine, Edward M</au><au>Desplan, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>8</volume><issue>9</issue><spage>e1002924</spage><epage>e1002924</epage><pages>e1002924-e1002924</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27(Kip1). Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23028343</pmid><doi>10.1371/journal.pgen.1002924</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2012-09, Vol.8 (9), p.e1002924-e1002924 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313523448 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Alleles Animals Binding sites Biology Cyclin-Dependent Kinase Inhibitor p27 - genetics Deoxyribonucleic acid DNA DNA-Binding Proteins - genetics DNA-ligand interactions Eye Eye - growth & development Gene expression Gene Expression Regulation, Developmental Genetic aspects Genetics Health aspects HEK293 Cells Homeobox genes Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Homeotic genes Humans Medicine Mice Mice, Transgenic Microphthalmia-Associated Transcription Factor - genetics Microphthalmia-Associated Transcription Factor - metabolism Mutation Mutation - genetics Organogenesis - genetics Otx Transcription Factors - genetics Physiological aspects Protein Structure, Tertiary - genetics Proteins Retina Retina - growth & development Retina - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
title | Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vsx2%20controls%20eye%20organogenesis%20and%20retinal%20progenitor%20identity%20via%20homeodomain%20and%20non-homeodomain%20residues%20required%20for%20high%20affinity%20DNA%20binding&rft.jtitle=PLoS%20genetics&rft.au=Zou,%20Changjiang&rft.date=2012-09-01&rft.volume=8&rft.issue=9&rft.spage=e1002924&rft.epage=e1002924&rft.pages=e1002924-e1002924&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002924&rft_dat=%3Cgale_plos_%3EA305191898%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313523448&rft_id=info:pmid/23028343&rft_galeid=A305191898&rft_doaj_id=oai_doaj_org_article_8c070c1f2027477a935b662801c2e509&rfr_iscdi=true |