Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2010-02, Vol.6 (2), p.e1000796-e1000796
Hauptverfasser: Counterman, Brian A, Araujo-Perez, Felix, Hines, Heather M, Baxter, Simon W, Morrison, Clay M, Lindstrom, Daniel P, Papa, Riccardo, Ferguson, Laura, Joron, Mathieu, Ffrench-Constant, Richard H, Smith, Christopher P, Nielsen, Dahlia M, Chen, Rui, Jiggins, Chris D, Reed, Robert D, Halder, Georg, Mallet, Jim, McMillan, W Owen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000796
container_issue 2
container_start_page e1000796
container_title PLoS genetics
container_volume 6
creator Counterman, Brian A
Araujo-Perez, Felix
Hines, Heather M
Baxter, Simon W
Morrison, Clay M
Lindstrom, Daniel P
Papa, Riccardo
Ferguson, Laura
Joron, Mathieu
Ffrench-Constant, Richard H
Smith, Christopher P
Nielsen, Dahlia M
Chen, Rui
Jiggins, Chris D
Reed, Robert D
Halder, Georg
Mallet, Jim
McMillan, W Owen
description Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
doi_str_mv 10.1371/journal.pgen.1000796
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313523296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A220411425</galeid><doaj_id>oai_doaj_org_article_a91d6ef2816e457dbb0d13c731ac4454</doaj_id><sourcerecordid>A220411425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</originalsourceid><addsrcrecordid>eNqVk81u1DAQxyMEoqXwBggsIYE47GLHjp1wQKoqaFcqVOLrak0cZ9eVE6e2g-i7cePFcLrbaiNxAEWOHfs3_5nxZLLsKcFLQgV5c-lG34NdDmvdLwnGWFT8XnZIioIuBMPs_t76IHsUwiXGtCgr8TA7yDFhOKfVYVaf6t51RqGNi2FIA7XOI2hgiBCN69-iuNFocMNob75R8qajUQG5Fn38_cta7Q30qDNJxF8j06MzbY1yvRkD0h6ie5w9aMEG_WQ3H2XfPrz_enK2OL84XZ0cny-U4DQuyrLhwCuFqxyUSC_AeQ0FA4VpzVOCpRKKs0YBrtuyBcWmLDRnFErBdUmPsudb3cG6IHfXEyShhBY5zSueiNWWaBxcysGbDvy1dGDkzYbzawk-JWe1hIo0XLd5SbhmhWjqGjeEKkFJcswKlrTe7byNdacbpfvowc5E5ye92ci1-yEnSS6mcF_tBLy7GnWIsjNBaWuh124MUlBapXoVNJEvtuQaUmSmb10SVBMtj_McM0JYXiRq-RcqPY3upnro1qT9mcHrmUFiov4Z1zCGIFdfPv8H--nf2Yvvc_blHrvRYOMmODtOv1qYg2wLKu9C8Lq9u2mC5dQPtwWXUz_IXT8ks2f7Vbozum0A-gfLygY6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733935853</pqid></control><display><type>article</type><title>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Counterman, Brian A ; Araujo-Perez, Felix ; Hines, Heather M ; Baxter, Simon W ; Morrison, Clay M ; Lindstrom, Daniel P ; Papa, Riccardo ; Ferguson, Laura ; Joron, Mathieu ; Ffrench-Constant, Richard H ; Smith, Christopher P ; Nielsen, Dahlia M ; Chen, Rui ; Jiggins, Chris D ; Reed, Robert D ; Halder, Georg ; Mallet, Jim ; McMillan, W Owen</creator><contributor>Nachman, Michael W.</contributor><creatorcontrib>Counterman, Brian A ; Araujo-Perez, Felix ; Hines, Heather M ; Baxter, Simon W ; Morrison, Clay M ; Lindstrom, Daniel P ; Papa, Riccardo ; Ferguson, Laura ; Joron, Mathieu ; Ffrench-Constant, Richard H ; Smith, Christopher P ; Nielsen, Dahlia M ; Chen, Rui ; Jiggins, Chris D ; Reed, Robert D ; Halder, Georg ; Mallet, Jim ; McMillan, W Owen ; Nachman, Michael W.</creatorcontrib><description>Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000796</identifier><identifier>PMID: 20140239</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation, Physiological - genetics ; Animals ; Butterflies ; Butterflies &amp; moths ; Butterflies - genetics ; Chromosomes, Artificial, Bacterial - genetics ; Evolution ; Evolution &amp; development ; Evolutionary Biology ; Evolutionary Biology/Evolutionary and Comparative Genetics ; Evolutionary Biology/Genomics ; Evolutionary Biology/Pattern Formation ; Gene expression ; Gene Expression Regulation ; Genetic aspects ; Genetic Loci - genetics ; Genetic Variation ; Genetics and Genomics/Population Genetics ; Genetics, Population ; Genome - genetics ; Genomics ; Genotype ; Hybridization, Genetic ; Linkage Disequilibrium - genetics ; Mimicry (Biology) ; Open Reading Frames - genetics ; Peru ; Phenotype ; Physical Chromosome Mapping ; Physiological aspects ; Pigmentation - genetics ; Polymorphism, Single Nucleotide - genetics ; Population genetics ; Sequence Analysis, DNA</subject><ispartof>PLoS genetics, 2010-02, Vol.6 (2), p.e1000796-e1000796</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Counterman et al. 2010</rights><rights>2010 Counterman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, et al. (2010) Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato. PLoS Genet 6(2): e1000796. doi:10.1371/journal.pgen.1000796</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</citedby><cites>FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20140239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nachman, Michael W.</contributor><creatorcontrib>Counterman, Brian A</creatorcontrib><creatorcontrib>Araujo-Perez, Felix</creatorcontrib><creatorcontrib>Hines, Heather M</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Morrison, Clay M</creatorcontrib><creatorcontrib>Lindstrom, Daniel P</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><creatorcontrib>Ferguson, Laura</creatorcontrib><creatorcontrib>Joron, Mathieu</creatorcontrib><creatorcontrib>Ffrench-Constant, Richard H</creatorcontrib><creatorcontrib>Smith, Christopher P</creatorcontrib><creatorcontrib>Nielsen, Dahlia M</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Jiggins, Chris D</creatorcontrib><creatorcontrib>Reed, Robert D</creatorcontrib><creatorcontrib>Halder, Georg</creatorcontrib><creatorcontrib>Mallet, Jim</creatorcontrib><creatorcontrib>McMillan, W Owen</creatorcontrib><title>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Animals</subject><subject>Butterflies</subject><subject>Butterflies &amp; moths</subject><subject>Butterflies - genetics</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolutionary Biology</subject><subject>Evolutionary Biology/Evolutionary and Comparative Genetics</subject><subject>Evolutionary Biology/Genomics</subject><subject>Evolutionary Biology/Pattern Formation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic Loci - genetics</subject><subject>Genetic Variation</subject><subject>Genetics and Genomics/Population Genetics</subject><subject>Genetics, Population</subject><subject>Genome - genetics</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Hybridization, Genetic</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Mimicry (Biology)</subject><subject>Open Reading Frames - genetics</subject><subject>Peru</subject><subject>Phenotype</subject><subject>Physical Chromosome Mapping</subject><subject>Physiological aspects</subject><subject>Pigmentation - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population genetics</subject><subject>Sequence Analysis, DNA</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk81u1DAQxyMEoqXwBggsIYE47GLHjp1wQKoqaFcqVOLrak0cZ9eVE6e2g-i7cePFcLrbaiNxAEWOHfs3_5nxZLLsKcFLQgV5c-lG34NdDmvdLwnGWFT8XnZIioIuBMPs_t76IHsUwiXGtCgr8TA7yDFhOKfVYVaf6t51RqGNi2FIA7XOI2hgiBCN69-iuNFocMNob75R8qajUQG5Fn38_cta7Q30qDNJxF8j06MzbY1yvRkD0h6ie5w9aMEG_WQ3H2XfPrz_enK2OL84XZ0cny-U4DQuyrLhwCuFqxyUSC_AeQ0FA4VpzVOCpRKKs0YBrtuyBcWmLDRnFErBdUmPsudb3cG6IHfXEyShhBY5zSueiNWWaBxcysGbDvy1dGDkzYbzawk-JWe1hIo0XLd5SbhmhWjqGjeEKkFJcswKlrTe7byNdacbpfvowc5E5ye92ci1-yEnSS6mcF_tBLy7GnWIsjNBaWuh124MUlBapXoVNJEvtuQaUmSmb10SVBMtj_McM0JYXiRq-RcqPY3upnro1qT9mcHrmUFiov4Z1zCGIFdfPv8H--nf2Yvvc_blHrvRYOMmODtOv1qYg2wLKu9C8Lq9u2mC5dQPtwWXUz_IXT8ks2f7Vbozum0A-gfLygY6</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Counterman, Brian A</creator><creator>Araujo-Perez, Felix</creator><creator>Hines, Heather M</creator><creator>Baxter, Simon W</creator><creator>Morrison, Clay M</creator><creator>Lindstrom, Daniel P</creator><creator>Papa, Riccardo</creator><creator>Ferguson, Laura</creator><creator>Joron, Mathieu</creator><creator>Ffrench-Constant, Richard H</creator><creator>Smith, Christopher P</creator><creator>Nielsen, Dahlia M</creator><creator>Chen, Rui</creator><creator>Jiggins, Chris D</creator><creator>Reed, Robert D</creator><creator>Halder, Georg</creator><creator>Mallet, Jim</creator><creator>McMillan, W Owen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100201</creationdate><title>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</title><author>Counterman, Brian A ; Araujo-Perez, Felix ; Hines, Heather M ; Baxter, Simon W ; Morrison, Clay M ; Lindstrom, Daniel P ; Papa, Riccardo ; Ferguson, Laura ; Joron, Mathieu ; Ffrench-Constant, Richard H ; Smith, Christopher P ; Nielsen, Dahlia M ; Chen, Rui ; Jiggins, Chris D ; Reed, Robert D ; Halder, Georg ; Mallet, Jim ; McMillan, W Owen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Animals</topic><topic>Butterflies</topic><topic>Butterflies &amp; moths</topic><topic>Butterflies - genetics</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolutionary Biology</topic><topic>Evolutionary Biology/Evolutionary and Comparative Genetics</topic><topic>Evolutionary Biology/Genomics</topic><topic>Evolutionary Biology/Pattern Formation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic Loci - genetics</topic><topic>Genetic Variation</topic><topic>Genetics and Genomics/Population Genetics</topic><topic>Genetics, Population</topic><topic>Genome - genetics</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Hybridization, Genetic</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Mimicry (Biology)</topic><topic>Open Reading Frames - genetics</topic><topic>Peru</topic><topic>Phenotype</topic><topic>Physical Chromosome Mapping</topic><topic>Physiological aspects</topic><topic>Pigmentation - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population genetics</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Counterman, Brian A</creatorcontrib><creatorcontrib>Araujo-Perez, Felix</creatorcontrib><creatorcontrib>Hines, Heather M</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Morrison, Clay M</creatorcontrib><creatorcontrib>Lindstrom, Daniel P</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><creatorcontrib>Ferguson, Laura</creatorcontrib><creatorcontrib>Joron, Mathieu</creatorcontrib><creatorcontrib>Ffrench-Constant, Richard H</creatorcontrib><creatorcontrib>Smith, Christopher P</creatorcontrib><creatorcontrib>Nielsen, Dahlia M</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Jiggins, Chris D</creatorcontrib><creatorcontrib>Reed, Robert D</creatorcontrib><creatorcontrib>Halder, Georg</creatorcontrib><creatorcontrib>Mallet, Jim</creatorcontrib><creatorcontrib>McMillan, W Owen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Counterman, Brian A</au><au>Araujo-Perez, Felix</au><au>Hines, Heather M</au><au>Baxter, Simon W</au><au>Morrison, Clay M</au><au>Lindstrom, Daniel P</au><au>Papa, Riccardo</au><au>Ferguson, Laura</au><au>Joron, Mathieu</au><au>Ffrench-Constant, Richard H</au><au>Smith, Christopher P</au><au>Nielsen, Dahlia M</au><au>Chen, Rui</au><au>Jiggins, Chris D</au><au>Reed, Robert D</au><au>Halder, Georg</au><au>Mallet, Jim</au><au>McMillan, W Owen</au><au>Nachman, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>6</volume><issue>2</issue><spage>e1000796</spage><epage>e1000796</epage><pages>e1000796-e1000796</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20140239</pmid><doi>10.1371/journal.pgen.1000796</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2010-02, Vol.6 (2), p.e1000796-e1000796
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313523296
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation
Adaptation, Physiological - genetics
Animals
Butterflies
Butterflies & moths
Butterflies - genetics
Chromosomes, Artificial, Bacterial - genetics
Evolution
Evolution & development
Evolutionary Biology
Evolutionary Biology/Evolutionary and Comparative Genetics
Evolutionary Biology/Genomics
Evolutionary Biology/Pattern Formation
Gene expression
Gene Expression Regulation
Genetic aspects
Genetic Loci - genetics
Genetic Variation
Genetics and Genomics/Population Genetics
Genetics, Population
Genome - genetics
Genomics
Genotype
Hybridization, Genetic
Linkage Disequilibrium - genetics
Mimicry (Biology)
Open Reading Frames - genetics
Peru
Phenotype
Physical Chromosome Mapping
Physiological aspects
Pigmentation - genetics
Polymorphism, Single Nucleotide - genetics
Population genetics
Sequence Analysis, DNA
title Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20hotspots%20for%20adaptation:%20the%20population%20genetics%20of%20M%C3%BCllerian%20mimicry%20in%20Heliconius%20erato&rft.jtitle=PLoS%20genetics&rft.au=Counterman,%20Brian%20A&rft.date=2010-02-01&rft.volume=6&rft.issue=2&rft.spage=e1000796&rft.epage=e1000796&rft.pages=e1000796-e1000796&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000796&rft_dat=%3Cgale_plos_%3EA220411425%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733935853&rft_id=info:pmid/20140239&rft_galeid=A220411425&rft_doaj_id=oai_doaj_org_article_a91d6ef2816e457dbb0d13c731ac4454&rfr_iscdi=true