Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato
Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2010-02, Vol.6 (2), p.e1000796-e1000796 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000796 |
---|---|
container_issue | 2 |
container_start_page | e1000796 |
container_title | PLoS genetics |
container_volume | 6 |
creator | Counterman, Brian A Araujo-Perez, Felix Hines, Heather M Baxter, Simon W Morrison, Clay M Lindstrom, Daniel P Papa, Riccardo Ferguson, Laura Joron, Mathieu Ffrench-Constant, Richard H Smith, Christopher P Nielsen, Dahlia M Chen, Rui Jiggins, Chris D Reed, Robert D Halder, Georg Mallet, Jim McMillan, W Owen |
description | Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations. |
doi_str_mv | 10.1371/journal.pgen.1000796 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313523296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A220411425</galeid><doaj_id>oai_doaj_org_article_a91d6ef2816e457dbb0d13c731ac4454</doaj_id><sourcerecordid>A220411425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</originalsourceid><addsrcrecordid>eNqVk81u1DAQxyMEoqXwBggsIYE47GLHjp1wQKoqaFcqVOLrak0cZ9eVE6e2g-i7cePFcLrbaiNxAEWOHfs3_5nxZLLsKcFLQgV5c-lG34NdDmvdLwnGWFT8XnZIioIuBMPs_t76IHsUwiXGtCgr8TA7yDFhOKfVYVaf6t51RqGNi2FIA7XOI2hgiBCN69-iuNFocMNob75R8qajUQG5Fn38_cta7Q30qDNJxF8j06MzbY1yvRkD0h6ie5w9aMEG_WQ3H2XfPrz_enK2OL84XZ0cny-U4DQuyrLhwCuFqxyUSC_AeQ0FA4VpzVOCpRKKs0YBrtuyBcWmLDRnFErBdUmPsudb3cG6IHfXEyShhBY5zSueiNWWaBxcysGbDvy1dGDkzYbzawk-JWe1hIo0XLd5SbhmhWjqGjeEKkFJcswKlrTe7byNdacbpfvowc5E5ye92ci1-yEnSS6mcF_tBLy7GnWIsjNBaWuh124MUlBapXoVNJEvtuQaUmSmb10SVBMtj_McM0JYXiRq-RcqPY3upnro1qT9mcHrmUFiov4Z1zCGIFdfPv8H--nf2Yvvc_blHrvRYOMmODtOv1qYg2wLKu9C8Lq9u2mC5dQPtwWXUz_IXT8ks2f7Vbozum0A-gfLygY6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733935853</pqid></control><display><type>article</type><title>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Counterman, Brian A ; Araujo-Perez, Felix ; Hines, Heather M ; Baxter, Simon W ; Morrison, Clay M ; Lindstrom, Daniel P ; Papa, Riccardo ; Ferguson, Laura ; Joron, Mathieu ; Ffrench-Constant, Richard H ; Smith, Christopher P ; Nielsen, Dahlia M ; Chen, Rui ; Jiggins, Chris D ; Reed, Robert D ; Halder, Georg ; Mallet, Jim ; McMillan, W Owen</creator><contributor>Nachman, Michael W.</contributor><creatorcontrib>Counterman, Brian A ; Araujo-Perez, Felix ; Hines, Heather M ; Baxter, Simon W ; Morrison, Clay M ; Lindstrom, Daniel P ; Papa, Riccardo ; Ferguson, Laura ; Joron, Mathieu ; Ffrench-Constant, Richard H ; Smith, Christopher P ; Nielsen, Dahlia M ; Chen, Rui ; Jiggins, Chris D ; Reed, Robert D ; Halder, Georg ; Mallet, Jim ; McMillan, W Owen ; Nachman, Michael W.</creatorcontrib><description>Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000796</identifier><identifier>PMID: 20140239</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation, Physiological - genetics ; Animals ; Butterflies ; Butterflies & moths ; Butterflies - genetics ; Chromosomes, Artificial, Bacterial - genetics ; Evolution ; Evolution & development ; Evolutionary Biology ; Evolutionary Biology/Evolutionary and Comparative Genetics ; Evolutionary Biology/Genomics ; Evolutionary Biology/Pattern Formation ; Gene expression ; Gene Expression Regulation ; Genetic aspects ; Genetic Loci - genetics ; Genetic Variation ; Genetics and Genomics/Population Genetics ; Genetics, Population ; Genome - genetics ; Genomics ; Genotype ; Hybridization, Genetic ; Linkage Disequilibrium - genetics ; Mimicry (Biology) ; Open Reading Frames - genetics ; Peru ; Phenotype ; Physical Chromosome Mapping ; Physiological aspects ; Pigmentation - genetics ; Polymorphism, Single Nucleotide - genetics ; Population genetics ; Sequence Analysis, DNA</subject><ispartof>PLoS genetics, 2010-02, Vol.6 (2), p.e1000796-e1000796</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Counterman et al. 2010</rights><rights>2010 Counterman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, et al. (2010) Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato. PLoS Genet 6(2): e1000796. doi:10.1371/journal.pgen.1000796</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</citedby><cites>FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20140239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nachman, Michael W.</contributor><creatorcontrib>Counterman, Brian A</creatorcontrib><creatorcontrib>Araujo-Perez, Felix</creatorcontrib><creatorcontrib>Hines, Heather M</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Morrison, Clay M</creatorcontrib><creatorcontrib>Lindstrom, Daniel P</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><creatorcontrib>Ferguson, Laura</creatorcontrib><creatorcontrib>Joron, Mathieu</creatorcontrib><creatorcontrib>Ffrench-Constant, Richard H</creatorcontrib><creatorcontrib>Smith, Christopher P</creatorcontrib><creatorcontrib>Nielsen, Dahlia M</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Jiggins, Chris D</creatorcontrib><creatorcontrib>Reed, Robert D</creatorcontrib><creatorcontrib>Halder, Georg</creatorcontrib><creatorcontrib>Mallet, Jim</creatorcontrib><creatorcontrib>McMillan, W Owen</creatorcontrib><title>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Animals</subject><subject>Butterflies</subject><subject>Butterflies & moths</subject><subject>Butterflies - genetics</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Evolutionary Biology</subject><subject>Evolutionary Biology/Evolutionary and Comparative Genetics</subject><subject>Evolutionary Biology/Genomics</subject><subject>Evolutionary Biology/Pattern Formation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic Loci - genetics</subject><subject>Genetic Variation</subject><subject>Genetics and Genomics/Population Genetics</subject><subject>Genetics, Population</subject><subject>Genome - genetics</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Hybridization, Genetic</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Mimicry (Biology)</subject><subject>Open Reading Frames - genetics</subject><subject>Peru</subject><subject>Phenotype</subject><subject>Physical Chromosome Mapping</subject><subject>Physiological aspects</subject><subject>Pigmentation - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population genetics</subject><subject>Sequence Analysis, DNA</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk81u1DAQxyMEoqXwBggsIYE47GLHjp1wQKoqaFcqVOLrak0cZ9eVE6e2g-i7cePFcLrbaiNxAEWOHfs3_5nxZLLsKcFLQgV5c-lG34NdDmvdLwnGWFT8XnZIioIuBMPs_t76IHsUwiXGtCgr8TA7yDFhOKfVYVaf6t51RqGNi2FIA7XOI2hgiBCN69-iuNFocMNob75R8qajUQG5Fn38_cta7Q30qDNJxF8j06MzbY1yvRkD0h6ie5w9aMEG_WQ3H2XfPrz_enK2OL84XZ0cny-U4DQuyrLhwCuFqxyUSC_AeQ0FA4VpzVOCpRKKs0YBrtuyBcWmLDRnFErBdUmPsudb3cG6IHfXEyShhBY5zSueiNWWaBxcysGbDvy1dGDkzYbzawk-JWe1hIo0XLd5SbhmhWjqGjeEKkFJcswKlrTe7byNdacbpfvowc5E5ye92ci1-yEnSS6mcF_tBLy7GnWIsjNBaWuh124MUlBapXoVNJEvtuQaUmSmb10SVBMtj_McM0JYXiRq-RcqPY3upnro1qT9mcHrmUFiov4Z1zCGIFdfPv8H--nf2Yvvc_blHrvRYOMmODtOv1qYg2wLKu9C8Lq9u2mC5dQPtwWXUz_IXT8ks2f7Vbozum0A-gfLygY6</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Counterman, Brian A</creator><creator>Araujo-Perez, Felix</creator><creator>Hines, Heather M</creator><creator>Baxter, Simon W</creator><creator>Morrison, Clay M</creator><creator>Lindstrom, Daniel P</creator><creator>Papa, Riccardo</creator><creator>Ferguson, Laura</creator><creator>Joron, Mathieu</creator><creator>Ffrench-Constant, Richard H</creator><creator>Smith, Christopher P</creator><creator>Nielsen, Dahlia M</creator><creator>Chen, Rui</creator><creator>Jiggins, Chris D</creator><creator>Reed, Robert D</creator><creator>Halder, Georg</creator><creator>Mallet, Jim</creator><creator>McMillan, W Owen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100201</creationdate><title>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</title><author>Counterman, Brian A ; Araujo-Perez, Felix ; Hines, Heather M ; Baxter, Simon W ; Morrison, Clay M ; Lindstrom, Daniel P ; Papa, Riccardo ; Ferguson, Laura ; Joron, Mathieu ; Ffrench-Constant, Richard H ; Smith, Christopher P ; Nielsen, Dahlia M ; Chen, Rui ; Jiggins, Chris D ; Reed, Robert D ; Halder, Georg ; Mallet, Jim ; McMillan, W Owen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c763t-88d6a69c092ac792aa02ba54ac03b61008c7c64dca0bf8fac42014e643a876e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Animals</topic><topic>Butterflies</topic><topic>Butterflies & moths</topic><topic>Butterflies - genetics</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Evolutionary Biology</topic><topic>Evolutionary Biology/Evolutionary and Comparative Genetics</topic><topic>Evolutionary Biology/Genomics</topic><topic>Evolutionary Biology/Pattern Formation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic Loci - genetics</topic><topic>Genetic Variation</topic><topic>Genetics and Genomics/Population Genetics</topic><topic>Genetics, Population</topic><topic>Genome - genetics</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Hybridization, Genetic</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Mimicry (Biology)</topic><topic>Open Reading Frames - genetics</topic><topic>Peru</topic><topic>Phenotype</topic><topic>Physical Chromosome Mapping</topic><topic>Physiological aspects</topic><topic>Pigmentation - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population genetics</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Counterman, Brian A</creatorcontrib><creatorcontrib>Araujo-Perez, Felix</creatorcontrib><creatorcontrib>Hines, Heather M</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Morrison, Clay M</creatorcontrib><creatorcontrib>Lindstrom, Daniel P</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><creatorcontrib>Ferguson, Laura</creatorcontrib><creatorcontrib>Joron, Mathieu</creatorcontrib><creatorcontrib>Ffrench-Constant, Richard H</creatorcontrib><creatorcontrib>Smith, Christopher P</creatorcontrib><creatorcontrib>Nielsen, Dahlia M</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Jiggins, Chris D</creatorcontrib><creatorcontrib>Reed, Robert D</creatorcontrib><creatorcontrib>Halder, Georg</creatorcontrib><creatorcontrib>Mallet, Jim</creatorcontrib><creatorcontrib>McMillan, W Owen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Counterman, Brian A</au><au>Araujo-Perez, Felix</au><au>Hines, Heather M</au><au>Baxter, Simon W</au><au>Morrison, Clay M</au><au>Lindstrom, Daniel P</au><au>Papa, Riccardo</au><au>Ferguson, Laura</au><au>Joron, Mathieu</au><au>Ffrench-Constant, Richard H</au><au>Smith, Christopher P</au><au>Nielsen, Dahlia M</au><au>Chen, Rui</au><au>Jiggins, Chris D</au><au>Reed, Robert D</au><au>Halder, Georg</au><au>Mallet, Jim</au><au>McMillan, W Owen</au><au>Nachman, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>6</volume><issue>2</issue><spage>e1000796</spage><epage>e1000796</epage><pages>e1000796-e1000796</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20140239</pmid><doi>10.1371/journal.pgen.1000796</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2010-02, Vol.6 (2), p.e1000796-e1000796 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313523296 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adaptation Adaptation, Physiological - genetics Animals Butterflies Butterflies & moths Butterflies - genetics Chromosomes, Artificial, Bacterial - genetics Evolution Evolution & development Evolutionary Biology Evolutionary Biology/Evolutionary and Comparative Genetics Evolutionary Biology/Genomics Evolutionary Biology/Pattern Formation Gene expression Gene Expression Regulation Genetic aspects Genetic Loci - genetics Genetic Variation Genetics and Genomics/Population Genetics Genetics, Population Genome - genetics Genomics Genotype Hybridization, Genetic Linkage Disequilibrium - genetics Mimicry (Biology) Open Reading Frames - genetics Peru Phenotype Physical Chromosome Mapping Physiological aspects Pigmentation - genetics Polymorphism, Single Nucleotide - genetics Population genetics Sequence Analysis, DNA |
title | Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20hotspots%20for%20adaptation:%20the%20population%20genetics%20of%20M%C3%BCllerian%20mimicry%20in%20Heliconius%20erato&rft.jtitle=PLoS%20genetics&rft.au=Counterman,%20Brian%20A&rft.date=2010-02-01&rft.volume=6&rft.issue=2&rft.spage=e1000796&rft.epage=e1000796&rft.pages=e1000796-e1000796&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000796&rft_dat=%3Cgale_plos_%3EA220411425%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733935853&rft_id=info:pmid/20140239&rft_galeid=A220411425&rft_doaj_id=oai_doaj_org_article_a91d6ef2816e457dbb0d13c731ac4454&rfr_iscdi=true |