Temporal coordination of gene networks by Zelda in the early Drosophila embryo

In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2011-10, Vol.7 (10), p.e1002339-e1002339
Hauptverfasser: Nien, Chung-Yi, Liang, Hsiao-Lan, Butcher, Stephen, Sun, Yujia, Fu, Shengbo, Gocha, Tenzin, Kirov, Nikolai, Manak, J Robert, Rushlow, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002339
container_issue 10
container_start_page e1002339
container_title PLoS genetics
container_volume 7
creator Nien, Chung-Yi
Liang, Hsiao-Lan
Butcher, Stephen
Sun, Yujia
Fu, Shengbo
Gocha, Tenzin
Kirov, Nikolai
Manak, J Robert
Rushlow, Christine
description In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic "hotspot" regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.
doi_str_mv 10.1371/journal.pgen.1002339
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313520672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A272364374</galeid><doaj_id>oai_doaj_org_article_fca76eb5d9714f979ab3278f6f518297</doaj_id><sourcerecordid>A272364374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c795t-99682406825ffdcf49cb46c5ecf91e733fa86060acfefa27b16830b7d235c7a43</originalsourceid><addsrcrecordid>eNqVk1uL1DAUx4so7rr6DUQLguLDjLk0TfOysKy3gWUXdPXBl5CmJzMZ02ZMWnW-vakzu0xBUAkk4eR3_oecS5Y9xmiOKcev1n4InXLzzRK6OUaIUCruZMeYMTrjBSruHtyPsgcxrhGirBL8fnZECCJVydlxdnkN7cYH5XLtfWhsp3rru9ybPMlC3kH_w4evMa-3-Rdwjcptl_cryEEFt81fBx_9ZmWdyqGtw9Y_zO4Z5SI82p8n2ae3b67P388urt4tzs8uZpoL1s-EKCtSoLQxYxptCqHrotQMtBEYOKVGVSUqkdIGjCK8xmVFUc0bQpnmqqAn2dOd7sb5KPepiBJTTBlBJSeJWOyIxqu13ATbqrCVXln52-DDUqrQW-1AGq14CTVrBMeFEVyomhJemdIwXBHBk9bpPtpQt9Bo6PqUsYno9KWzK7n03yXFgpeVSAIv9gLBfxsg9rK1UYNzqgM_RCkI4oIzyv9OIsQ5EWJMwbMduVTpD7YzPoXWIy3PSEpAWVA-UvM_UGk10FrtOzA22ScOLycOienhZ79UQ4xy8fHDf7CX_85efZ6yzw_YFSjXr6J3w9iacQoWO1CnRowBzG1NMJLjlNy0hhynRO6nJLk9OaznrdPNWNBfTV0Lwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900772994</pqid></control><display><type>article</type><title>Temporal coordination of gene networks by Zelda in the early Drosophila embryo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Nien, Chung-Yi ; Liang, Hsiao-Lan ; Butcher, Stephen ; Sun, Yujia ; Fu, Shengbo ; Gocha, Tenzin ; Kirov, Nikolai ; Manak, J Robert ; Rushlow, Christine</creator><contributor>Barsh, Gregory S.</contributor><creatorcontrib>Nien, Chung-Yi ; Liang, Hsiao-Lan ; Butcher, Stephen ; Sun, Yujia ; Fu, Shengbo ; Gocha, Tenzin ; Kirov, Nikolai ; Manak, J Robert ; Rushlow, Christine ; Barsh, Gregory S.</creatorcontrib><description>In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic "hotspot" regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002339</identifier><identifier>PMID: 22028675</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Binding Sites - genetics ; Biology ; Blastoderm - embryology ; Blastoderm - growth &amp; development ; Body Patterning - genetics ; Data processing ; DNA binding proteins ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Embryo ; Embryonic Development - genetics ; Enhancer Elements, Genetic - genetics ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genetic aspects ; Genetics ; Genomes ; Neurogenesis - genetics ; Nucleotide Motifs - genetics ; Physiological aspects ; Promoter Regions, Genetic ; Protein Binding - genetics ; Proteins ; Sex Determination Processes - genetics ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation - genetics ; Zygote - growth &amp; development</subject><ispartof>PLoS genetics, 2011-10, Vol.7 (10), p.e1002339-e1002339</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Nien et al. 2011</rights><rights>2011 Nien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nien C-Y, Liang H-L, Butcher S, Sun Y, Fu S, et al. (2011) Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo. PLoS Genet 7(10): e1002339. doi:10.1371/journal.pgen.1002339</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c795t-99682406825ffdcf49cb46c5ecf91e733fa86060acfefa27b16830b7d235c7a43</citedby><cites>FETCH-LOGICAL-c795t-99682406825ffdcf49cb46c5ecf91e733fa86060acfefa27b16830b7d235c7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197689/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197689/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22028675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Barsh, Gregory S.</contributor><creatorcontrib>Nien, Chung-Yi</creatorcontrib><creatorcontrib>Liang, Hsiao-Lan</creatorcontrib><creatorcontrib>Butcher, Stephen</creatorcontrib><creatorcontrib>Sun, Yujia</creatorcontrib><creatorcontrib>Fu, Shengbo</creatorcontrib><creatorcontrib>Gocha, Tenzin</creatorcontrib><creatorcontrib>Kirov, Nikolai</creatorcontrib><creatorcontrib>Manak, J Robert</creatorcontrib><creatorcontrib>Rushlow, Christine</creatorcontrib><title>Temporal coordination of gene networks by Zelda in the early Drosophila embryo</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic "hotspot" regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.</description><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Biology</subject><subject>Blastoderm - embryology</subject><subject>Blastoderm - growth &amp; development</subject><subject>Body Patterning - genetics</subject><subject>Data processing</subject><subject>DNA binding proteins</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryo</subject><subject>Embryonic Development - genetics</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Neurogenesis - genetics</subject><subject>Nucleotide Motifs - genetics</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding - genetics</subject><subject>Proteins</subject><subject>Sex Determination Processes - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation - genetics</subject><subject>Zygote - growth &amp; development</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUx4so7rr6DUQLguLDjLk0TfOysKy3gWUXdPXBl5CmJzMZ02ZMWnW-vakzu0xBUAkk4eR3_oecS5Y9xmiOKcev1n4InXLzzRK6OUaIUCruZMeYMTrjBSruHtyPsgcxrhGirBL8fnZECCJVydlxdnkN7cYH5XLtfWhsp3rru9ybPMlC3kH_w4evMa-3-Rdwjcptl_cryEEFt81fBx_9ZmWdyqGtw9Y_zO4Z5SI82p8n2ae3b67P388urt4tzs8uZpoL1s-EKCtSoLQxYxptCqHrotQMtBEYOKVGVSUqkdIGjCK8xmVFUc0bQpnmqqAn2dOd7sb5KPepiBJTTBlBJSeJWOyIxqu13ATbqrCVXln52-DDUqrQW-1AGq14CTVrBMeFEVyomhJemdIwXBHBk9bpPtpQt9Bo6PqUsYno9KWzK7n03yXFgpeVSAIv9gLBfxsg9rK1UYNzqgM_RCkI4oIzyv9OIsQ5EWJMwbMduVTpD7YzPoXWIy3PSEpAWVA-UvM_UGk10FrtOzA22ScOLycOienhZ79UQ4xy8fHDf7CX_85efZ6yzw_YFSjXr6J3w9iacQoWO1CnRowBzG1NMJLjlNy0hhynRO6nJLk9OaznrdPNWNBfTV0Lwg</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Nien, Chung-Yi</creator><creator>Liang, Hsiao-Lan</creator><creator>Butcher, Stephen</creator><creator>Sun, Yujia</creator><creator>Fu, Shengbo</creator><creator>Gocha, Tenzin</creator><creator>Kirov, Nikolai</creator><creator>Manak, J Robert</creator><creator>Rushlow, Christine</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111001</creationdate><title>Temporal coordination of gene networks by Zelda in the early Drosophila embryo</title><author>Nien, Chung-Yi ; Liang, Hsiao-Lan ; Butcher, Stephen ; Sun, Yujia ; Fu, Shengbo ; Gocha, Tenzin ; Kirov, Nikolai ; Manak, J Robert ; Rushlow, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c795t-99682406825ffdcf49cb46c5ecf91e733fa86060acfefa27b16830b7d235c7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Biology</topic><topic>Blastoderm - embryology</topic><topic>Blastoderm - growth &amp; development</topic><topic>Body Patterning - genetics</topic><topic>Data processing</topic><topic>DNA binding proteins</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryo</topic><topic>Embryonic Development - genetics</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Neurogenesis - genetics</topic><topic>Nucleotide Motifs - genetics</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding - genetics</topic><topic>Proteins</topic><topic>Sex Determination Processes - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation - genetics</topic><topic>Zygote - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nien, Chung-Yi</creatorcontrib><creatorcontrib>Liang, Hsiao-Lan</creatorcontrib><creatorcontrib>Butcher, Stephen</creatorcontrib><creatorcontrib>Sun, Yujia</creatorcontrib><creatorcontrib>Fu, Shengbo</creatorcontrib><creatorcontrib>Gocha, Tenzin</creatorcontrib><creatorcontrib>Kirov, Nikolai</creatorcontrib><creatorcontrib>Manak, J Robert</creatorcontrib><creatorcontrib>Rushlow, Christine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nien, Chung-Yi</au><au>Liang, Hsiao-Lan</au><au>Butcher, Stephen</au><au>Sun, Yujia</au><au>Fu, Shengbo</au><au>Gocha, Tenzin</au><au>Kirov, Nikolai</au><au>Manak, J Robert</au><au>Rushlow, Christine</au><au>Barsh, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal coordination of gene networks by Zelda in the early Drosophila embryo</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>7</volume><issue>10</issue><spage>e1002339</spage><epage>e1002339</epage><pages>e1002339-e1002339</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic "hotspot" regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22028675</pmid><doi>10.1371/journal.pgen.1002339</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2011-10, Vol.7 (10), p.e1002339-e1002339
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313520672
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Animals
Binding Sites - genetics
Biology
Blastoderm - embryology
Blastoderm - growth & development
Body Patterning - genetics
Data processing
DNA binding proteins
Drosophila
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Embryo
Embryonic Development - genetics
Enhancer Elements, Genetic - genetics
Gene expression
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Genetic aspects
Genetics
Genomes
Neurogenesis - genetics
Nucleotide Motifs - genetics
Physiological aspects
Promoter Regions, Genetic
Protein Binding - genetics
Proteins
Sex Determination Processes - genetics
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation - genetics
Zygote - growth & development
title Temporal coordination of gene networks by Zelda in the early Drosophila embryo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20coordination%20of%20gene%20networks%20by%20Zelda%20in%20the%20early%20Drosophila%20embryo&rft.jtitle=PLoS%20genetics&rft.au=Nien,%20Chung-Yi&rft.date=2011-10-01&rft.volume=7&rft.issue=10&rft.spage=e1002339&rft.epage=e1002339&rft.pages=e1002339-e1002339&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002339&rft_dat=%3Cgale_plos_%3EA272364374%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900772994&rft_id=info:pmid/22028675&rft_galeid=A272364374&rft_doaj_id=oai_doaj_org_article_fca76eb5d9714f979ab3278f6f518297&rfr_iscdi=true