Microhomology directs diverse DNA break repair pathways and chromosomal translocations

Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2012-11, Vol.8 (11), p.e1003026
Hauptverfasser: Villarreal, Diana D, Lee, Kihoon, Deem, Angela, Shim, Eun Yong, Malkova, Anna, Lee, Sang Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e1003026
container_title PLoS genetics
container_volume 8
creator Villarreal, Diana D
Lee, Kihoon
Deem, Angela
Shim, Eun Yong
Malkova, Anna
Lee, Sang Eun
description Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.
doi_str_mv 10.1371/journal.pgen.1003026
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313505149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312014960</galeid><doaj_id>oai_doaj_org_article_b971de317b914b5b8bbbbd7c0654446d</doaj_id><sourcerecordid>A312014960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-738c5e8bde9442ca2fba94b07535bd15ca26f7d906778a4fc57e1389c99c4043</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QLguDFjEmTNM2NMKxfA-su6LK3IV9tM6ZNTTqr8-_N7nSXKShoc5Fy8rxvT07fLHsOwRIiCt9u_Db0wi2HxvRLCAACRfkgO4aEoAXFAD88eD_KnsS4SQypGH2cHRUIYlwW5Di7-mJV8K3vvPPNLtc2GDXGtF-bEE3-_nyVy2DE9zyYQdiQD2Jsf4pdzEWvc9WGJIy-Ey4fg-ij80qM1vfxafaoFi6aZ9N-kl1-_HB5-nlxdvFpfbo6WyjKinFBUaWIqaQ2DONCiaKWgmEJKEFEakhSpaypZqCktBK4VoQaiCqmGFPpWugke7m3HZyPfJpI5BBBRACBmCVivSe0Fxs-BNuJsONeWH5b8KHhIoxWOcMlo1AbBKlkEEsiK5keTRUoCU7T0snr3fS1reyMVqZPl3Yz0_lJb1ve-GuOUiMY02TwajII_sfWxPEvLU9UI1JXtq99MlOdjYqvECxAYkqQqOUfqLS06azyvaltqs8Eb2aCxIzm19iIbYx8_e3rf7Dn_85eXM3Z1wdsa4Qb2-jd9jYzcxDvwRTOGIOp76cMAb-J_93k-E38-RT_JHtx-IfuRXd5R78BzDz_Qw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313505149</pqid></control><display><type>article</type><title>Microhomology directs diverse DNA break repair pathways and chromosomal translocations</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Villarreal, Diana D ; Lee, Kihoon ; Deem, Angela ; Shim, Eun Yong ; Malkova, Anna ; Lee, Sang Eun</creator><contributor>Lichten, Michael</contributor><creatorcontrib>Villarreal, Diana D ; Lee, Kihoon ; Deem, Angela ; Shim, Eun Yong ; Malkova, Anna ; Lee, Sang Eun ; Lichten, Michael</creatorcontrib><description>Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using &gt;15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003026</identifier><identifier>PMID: 23144625</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Chromosome Aberrations ; Chromosomes ; Chromosomes - metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Repair ; DNA Replication - genetics ; DNA-Binding Proteins ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Genetics ; Homology (Biology) ; Mutation ; Proteins ; Recombination, Genetic ; Saccharomyces cerevisiae ; Translocation (Genetics) ; Translocation, Genetic - genetics</subject><ispartof>PLoS genetics, 2012-11, Vol.8 (11), p.e1003026</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Villarreal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Villarreal DD, Lee K, Deem A, Shim EY, Malkova A, et al. (2012) Microhomology Directs Diverse DNA Break Repair Pathways and Chromosomal Translocations. PLoS Genet 8(11): e1003026. doi:10.1371/journal.pgen.1003026</rights><rights>2012 Villarreal et al 2012 Villarreal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-738c5e8bde9442ca2fba94b07535bd15ca26f7d906778a4fc57e1389c99c4043</citedby><cites>FETCH-LOGICAL-c792t-738c5e8bde9442ca2fba94b07535bd15ca26f7d906778a4fc57e1389c99c4043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493447/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493447/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23144625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lichten, Michael</contributor><creatorcontrib>Villarreal, Diana D</creatorcontrib><creatorcontrib>Lee, Kihoon</creatorcontrib><creatorcontrib>Deem, Angela</creatorcontrib><creatorcontrib>Shim, Eun Yong</creatorcontrib><creatorcontrib>Malkova, Anna</creatorcontrib><creatorcontrib>Lee, Sang Eun</creatorcontrib><title>Microhomology directs diverse DNA break repair pathways and chromosomal translocations</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using &gt;15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.</description><subject>Biology</subject><subject>Chromosome Aberrations</subject><subject>Chromosomes</subject><subject>Chromosomes - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA Repair</subject><subject>DNA Replication - genetics</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Genetics</subject><subject>Homology (Biology)</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Translocation (Genetics)</subject><subject>Translocation, Genetic - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QLguDFjEmTNM2NMKxfA-su6LK3IV9tM6ZNTTqr8-_N7nSXKShoc5Fy8rxvT07fLHsOwRIiCt9u_Db0wi2HxvRLCAACRfkgO4aEoAXFAD88eD_KnsS4SQypGH2cHRUIYlwW5Di7-mJV8K3vvPPNLtc2GDXGtF-bEE3-_nyVy2DE9zyYQdiQD2Jsf4pdzEWvc9WGJIy-Ey4fg-ij80qM1vfxafaoFi6aZ9N-kl1-_HB5-nlxdvFpfbo6WyjKinFBUaWIqaQ2DONCiaKWgmEJKEFEakhSpaypZqCktBK4VoQaiCqmGFPpWugke7m3HZyPfJpI5BBBRACBmCVivSe0Fxs-BNuJsONeWH5b8KHhIoxWOcMlo1AbBKlkEEsiK5keTRUoCU7T0snr3fS1reyMVqZPl3Yz0_lJb1ve-GuOUiMY02TwajII_sfWxPEvLU9UI1JXtq99MlOdjYqvECxAYkqQqOUfqLS06azyvaltqs8Eb2aCxIzm19iIbYx8_e3rf7Dn_85eXM3Z1wdsa4Qb2-jd9jYzcxDvwRTOGIOp76cMAb-J_93k-E38-RT_JHtx-IfuRXd5R78BzDz_Qw</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Villarreal, Diana D</creator><creator>Lee, Kihoon</creator><creator>Deem, Angela</creator><creator>Shim, Eun Yong</creator><creator>Malkova, Anna</creator><creator>Lee, Sang Eun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>Microhomology directs diverse DNA break repair pathways and chromosomal translocations</title><author>Villarreal, Diana D ; Lee, Kihoon ; Deem, Angela ; Shim, Eun Yong ; Malkova, Anna ; Lee, Sang Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-738c5e8bde9442ca2fba94b07535bd15ca26f7d906778a4fc57e1389c99c4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>Chromosome Aberrations</topic><topic>Chromosomes</topic><topic>Chromosomes - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA Repair</topic><topic>DNA Replication - genetics</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Genetics</topic><topic>Homology (Biology)</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Translocation (Genetics)</topic><topic>Translocation, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villarreal, Diana D</creatorcontrib><creatorcontrib>Lee, Kihoon</creatorcontrib><creatorcontrib>Deem, Angela</creatorcontrib><creatorcontrib>Shim, Eun Yong</creatorcontrib><creatorcontrib>Malkova, Anna</creatorcontrib><creatorcontrib>Lee, Sang Eun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villarreal, Diana D</au><au>Lee, Kihoon</au><au>Deem, Angela</au><au>Shim, Eun Yong</au><au>Malkova, Anna</au><au>Lee, Sang Eun</au><au>Lichten, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microhomology directs diverse DNA break repair pathways and chromosomal translocations</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>8</volume><issue>11</issue><spage>e1003026</spage><pages>e1003026-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using &gt;15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23144625</pmid><doi>10.1371/journal.pgen.1003026</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2012-11, Vol.8 (11), p.e1003026
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313505149
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biology
Chromosome Aberrations
Chromosomes
Chromosomes - metabolism
DNA Breaks, Double-Stranded
DNA End-Joining Repair
DNA Repair
DNA Replication - genetics
DNA-Binding Proteins
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
Genetics
Homology (Biology)
Mutation
Proteins
Recombination, Genetic
Saccharomyces cerevisiae
Translocation (Genetics)
Translocation, Genetic - genetics
title Microhomology directs diverse DNA break repair pathways and chromosomal translocations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microhomology%20directs%20diverse%20DNA%20break%20repair%20pathways%20and%20chromosomal%20translocations&rft.jtitle=PLoS%20genetics&rft.au=Villarreal,%20Diana%20D&rft.date=2012-11-01&rft.volume=8&rft.issue=11&rft.spage=e1003026&rft.pages=e1003026-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003026&rft_dat=%3Cgale_plos_%3EA312014960%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313505149&rft_id=info:pmid/23144625&rft_galeid=A312014960&rft_doaj_id=oai_doaj_org_article_b971de317b914b5b8bbbbd7c0654446d&rfr_iscdi=true